L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.5 − 0.866i)3-s + (−0.499 − 0.866i)4-s + 0.999·6-s + (−0.5 − 0.866i)7-s + 0.999·8-s + (−0.499 + 0.866i)9-s + (0.5 + 0.866i)11-s + (−0.499 + 0.866i)12-s + 0.999·14-s + (−0.5 + 0.866i)16-s + (0.5 + 0.866i)17-s + (−0.499 − 0.866i)18-s + (−0.499 + 0.866i)21-s − 0.999·22-s + (−0.5 + 0.866i)23-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.5 − 0.866i)3-s + (−0.499 − 0.866i)4-s + 0.999·6-s + (−0.5 − 0.866i)7-s + 0.999·8-s + (−0.499 + 0.866i)9-s + (0.5 + 0.866i)11-s + (−0.499 + 0.866i)12-s + 0.999·14-s + (−0.5 + 0.866i)16-s + (0.5 + 0.866i)17-s + (−0.499 − 0.866i)18-s + (−0.499 + 0.866i)21-s − 0.999·22-s + (−0.5 + 0.866i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3864 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0633 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3864 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0633 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4947594199\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4947594199\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
| 7 | \( 1 + (0.5 + 0.866i)T \) |
| 23 | \( 1 + (0.5 - 0.866i)T \) |
good | 5 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + T + T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + T + T^{2} \) |
| 73 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 - 2T + T^{2} \) |
| 89 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.635164471155224299609633146046, −7.81883514142034311086079743865, −7.40467964676419264560926731991, −6.68828042689835933005012048544, −6.17193879448464788014814790169, −5.41192175869626677242436999120, −4.47959914242293995394590980714, −3.63311580300619851180057504939, −1.98430280576089188041396917564, −1.16918345609786118996748633236,
0.39728433309302425016243066789, 1.98439924577398963463871647379, 3.14460965188376305172179032263, 3.56565743517970142788511140951, 4.53439156329074768479390790282, 5.46825177460587599965927425734, 6.01626234519409887287532324077, 7.05797140902649174918237462276, 8.006432103935474332582634242024, 8.936458112476385394368884422230