L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.5 − 0.866i)3-s + (−0.499 − 0.866i)4-s + 0.999·6-s + (−0.5 − 0.866i)7-s + 0.999·8-s + (−0.499 + 0.866i)9-s + (0.5 + 0.866i)11-s + (−0.499 + 0.866i)12-s + 0.999·14-s + (−0.5 + 0.866i)16-s + (0.5 + 0.866i)17-s + (−0.499 − 0.866i)18-s + (−0.499 + 0.866i)21-s − 0.999·22-s + (−0.5 + 0.866i)23-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.5 − 0.866i)3-s + (−0.499 − 0.866i)4-s + 0.999·6-s + (−0.5 − 0.866i)7-s + 0.999·8-s + (−0.499 + 0.866i)9-s + (0.5 + 0.866i)11-s + (−0.499 + 0.866i)12-s + 0.999·14-s + (−0.5 + 0.866i)16-s + (0.5 + 0.866i)17-s + (−0.499 − 0.866i)18-s + (−0.499 + 0.866i)21-s − 0.999·22-s + (−0.5 + 0.866i)23-s + ⋯ |
Λ(s)=(=(3864s/2ΓC(s)L(s)(−0.0633−0.997i)Λ(1−s)
Λ(s)=(=(3864s/2ΓC(s)L(s)(−0.0633−0.997i)Λ(1−s)
Degree: |
2 |
Conductor: |
3864
= 23⋅3⋅7⋅23
|
Sign: |
−0.0633−0.997i
|
Analytic conductor: |
1.92838 |
Root analytic conductor: |
1.38866 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3864(275,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3864, ( :0), −0.0633−0.997i)
|
Particular Values
L(21) |
≈ |
0.4947594199 |
L(21) |
≈ |
0.4947594199 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5−0.866i)T |
| 3 | 1+(0.5+0.866i)T |
| 7 | 1+(0.5+0.866i)T |
| 23 | 1+(0.5−0.866i)T |
good | 5 | 1+(0.5+0.866i)T2 |
| 11 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 13 | 1−T2 |
| 17 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 19 | 1+(0.5+0.866i)T2 |
| 29 | 1+T+T2 |
| 31 | 1+(0.5−0.866i)T2 |
| 37 | 1+(1−1.73i)T+(−0.5−0.866i)T2 |
| 41 | 1−T2 |
| 43 | 1−T2 |
| 47 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 53 | 1+(0.5−0.866i)T2 |
| 59 | 1+(0.5−0.866i)T2 |
| 61 | 1+(1−1.73i)T+(−0.5−0.866i)T2 |
| 67 | 1+(0.5−0.866i)T2 |
| 71 | 1+T+T2 |
| 73 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 79 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 83 | 1−2T+T2 |
| 89 | 1+(1−1.73i)T+(−0.5−0.866i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.635164471155224299609633146046, −7.81883514142034311086079743865, −7.40467964676419264560926731991, −6.68828042689835933005012048544, −6.17193879448464788014814790169, −5.41192175869626677242436999120, −4.47959914242293995394590980714, −3.63311580300619851180057504939, −1.98430280576089188041396917564, −1.16918345609786118996748633236,
0.39728433309302425016243066789, 1.98439924577398963463871647379, 3.14460965188376305172179032263, 3.56565743517970142788511140951, 4.53439156329074768479390790282, 5.46825177460587599965927425734, 6.01626234519409887287532324077, 7.05797140902649174918237462276, 8.006432103935474332582634242024, 8.936458112476385394368884422230