L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.5 − 0.866i)3-s + (−0.499 − 0.866i)4-s − 0.999·6-s + (−0.5 − 0.866i)7-s − 0.999·8-s + (−0.499 + 0.866i)9-s + (−0.5 − 0.866i)11-s + (−0.499 + 0.866i)12-s − 0.999·14-s + (−0.5 + 0.866i)16-s + (−0.5 − 0.866i)17-s + (0.499 + 0.866i)18-s + (−0.499 + 0.866i)21-s − 0.999·22-s + (0.5 − 0.866i)23-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.5 − 0.866i)3-s + (−0.499 − 0.866i)4-s − 0.999·6-s + (−0.5 − 0.866i)7-s − 0.999·8-s + (−0.499 + 0.866i)9-s + (−0.5 − 0.866i)11-s + (−0.499 + 0.866i)12-s − 0.999·14-s + (−0.5 + 0.866i)16-s + (−0.5 − 0.866i)17-s + (0.499 + 0.866i)18-s + (−0.499 + 0.866i)21-s − 0.999·22-s + (0.5 − 0.866i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3864 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0633 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3864 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0633 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6350857480\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6350857480\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
| 7 | \( 1 + (0.5 + 0.866i)T \) |
| 23 | \( 1 + (-0.5 + 0.866i)T \) |
good | 5 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 - T + T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T + T^{2} \) |
| 73 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + 2T + T^{2} \) |
| 89 | \( 1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.219189188642780404542904303302, −7.16938022147280820033971489848, −6.50210872235113573944721055360, −5.95114725925289441576948395211, −4.94359325664082042010431851080, −4.40462312584746520102431715530, −3.11991575713817529575914785956, −2.64305245509028095759195578890, −1.31962355013442583721465561600, −0.33066867244819681763962404691,
2.22772981036653817504995239704, 3.36646395070256590935335234095, 3.93190234913587210165587762504, 5.05906572231696057694558227822, 5.27982402753625588314713162915, 6.19419868316913839343937281182, 6.74486036309056080591680124825, 7.65040822581161830897151123695, 8.504212232770323857713115624242, 9.209634382667069929620020228269