L(s) = 1 | + (−1.91 + 0.0377i)2-s + (−0.799 − 0.0323i)3-s + (1.08 − 0.144i)4-s + (−0.606 + 0.961i)5-s + (1.52 + 0.0317i)6-s + (−0.242 + 0.0323i)7-s + (0.916 + 0.181i)8-s + (−0.134 + 0.0517i)9-s + (1.12 − 1.85i)10-s + (−0.976 − 0.0482i)11-s + (−0.872 + 0.0799i)12-s + (−0.137 + 0.249i)13-s + (0.462 − 0.0709i)14-s + (0.516 − 0.748i)15-s + (−1.88 + 0.0562i)16-s + (−0.292 + 0.852i)17-s + ⋯ |
Λ(s)=(=(ΓR(s+24.6i)ΓR(s−0.0621i)ΓR(s−7.93i)ΓR(s−16.6i)L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1
|
Sign: |
1
|
Analytic conductor: |
0.0646165 |
Root analytic conductor: |
0.504180 |
Rational: |
no |
Arithmetic: |
no |
Primitive: |
yes
|
Self-dual: |
no
|
Selberg data: |
(4, 1, (24.625120245i,−0.062191724021i,−7.93038878332i,−16.63253973772i: ), 1)
|
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−22.8650342, −20.3642624, −18.9905560, −17.8583767, −16.9152521, −15.9554273, −13.0949839, −11.4224256, −9.9565801, −8.7739335, −7.6539659, −4.9978665, −0.3963276,
10.6322979, 18.1098191, 19.3345203, 22.3645305, 23.5455547