Properties

Label 4-1-1.1-r0e4-m0.06m7.93m16.63p24.63-0
Degree 44
Conductor 11
Sign 11
Analytic cond. 0.06461650.0646165
Root an. cond. 0.5041800.504180
Arithmetic no
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Related objects

Downloads

Learn more

Dirichlet series

L(s)  = 1  + (−1.91 + 0.0377i)2-s + (−0.799 − 0.0323i)3-s + (1.08 − 0.144i)4-s + (−0.606 + 0.961i)5-s + (1.52 + 0.0317i)6-s + (−0.242 + 0.0323i)7-s + (0.916 + 0.181i)8-s + (−0.134 + 0.0517i)9-s + (1.12 − 1.85i)10-s + (−0.976 − 0.0482i)11-s + (−0.872 + 0.0799i)12-s + (−0.137 + 0.249i)13-s + (0.462 − 0.0709i)14-s + (0.516 − 0.748i)15-s + (−1.88 + 0.0562i)16-s + (−0.292 + 0.852i)17-s + ⋯

Functional equation

Λ(s)=(ΓR(s+24.6i)ΓR(s0.0621i)ΓR(s7.93i)ΓR(s16.6i)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\Gamma_{\R}(s+24.6i) \, \Gamma_{\R}(s-0.0621i) \, \Gamma_{\R}(s-7.93i) \, \Gamma_{\R}(s-16.6i) \, L(s)\cr=\mathstrut & \,\overline{\Lambda}(1-s)\end{aligned}

Invariants

Degree: 44
Conductor: 11
Sign: 11
Analytic conductor: 0.06461650.0646165
Root analytic conductor: 0.5041800.504180
Rational: no
Arithmetic: no
Primitive: yes
Self-dual: no
Selberg data: (4, 1, (24.625120245i,0.062191724021i,7.93038878332i,16.63253973772i: ), 1)(4,\ 1,\ (24.625120245i, -0.062191724021i, -7.93038878332i, -16.63253973772i:\ ),\ 1)

Euler product

L(s)=p j=14(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−22.8650342, −20.3642624, −18.9905560, −17.8583767, −16.9152521, −15.9554273, −13.0949839, −11.4224256, −9.9565801, −8.7739335, −7.6539659, −4.9978665, −0.3963276, 10.6322979, 18.1098191, 19.3345203, 22.3645305, 23.5455547

Graph of the ZZ-function along the critical line