Properties

Label 4-1-1.1-r0e4-m1.14p7.61p17.31m23.78-0
Degree 44
Conductor 11
Sign 11
Analytic cond. 2.022602.02260
Root an. cond. 1.192551.19255
Arithmetic no
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Related objects

Downloads

Learn more

Dirichlet series

L(s)  = 1  + (0.677 − 0.839i)2-s + (−0.0660 − 0.190i)3-s + (−0.217 − 1.13i)4-s + (−0.722 + 0.445i)5-s + (−0.204 − 0.0732i)6-s + (0.161 − 0.260i)7-s + (−0.404 + 0.227i)8-s + (−0.335 + 0.0251i)9-s + (−0.115 + 0.908i)10-s + (0.155 − 2.12i)11-s + (−0.201 + 0.116i)12-s + (1.19 + 0.708i)13-s + (−0.108 − 0.311i)14-s + (0.132 + 0.107i)15-s + (0.0739 + 0.461i)16-s + (0.433 + 0.112i)17-s + ⋯

Functional equation

Λ(s)=(ΓR(s23.7i)ΓR(s1.14i)ΓR(s+7.60i)ΓR(s+17.3i)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\Gamma_{\R}(s-23.7i) \, \Gamma_{\R}(s-1.14i) \, \Gamma_{\R}(s+7.60i) \, \Gamma_{\R}(s+17.3i) \, L(s)\cr=\mathstrut & \,\overline{\Lambda}(1-s)\end{aligned}

Invariants

Degree: 44
Conductor: 11
Sign: 11
Analytic conductor: 2.022602.02260
Root analytic conductor: 1.192551.19255
Rational: no
Arithmetic: no
Primitive: yes
Self-dual: no
Selberg data: (4, 1, (23.7804846144i,1.141485214492i,7.60977421348i,17.31219561542i: ), 1)(4,\ 1,\ (-23.7804846144i, -1.141485214492i, 7.60977421348i, 17.31219561542i:\ ),\ 1)

Euler product

L(s)=p j=14(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−23.39664408, −22.56444137, −20.58138783, −15.40137552, −12.61591034, −4.29441687, 3.69633164, 5.94476917, 8.41565166, 10.97961379, 11.39737080, 13.52308045, 14.44034919, 16.38697267, 18.70071824, 19.66452990, 21.37405546, 23.35958806

Graph of the ZZ-function along the critical line