L(s) = 1 | + (0.677 − 0.839i)2-s + (−0.0660 − 0.190i)3-s + (−0.217 − 1.13i)4-s + (−0.722 + 0.445i)5-s + (−0.204 − 0.0732i)6-s + (0.161 − 0.260i)7-s + (−0.404 + 0.227i)8-s + (−0.335 + 0.0251i)9-s + (−0.115 + 0.908i)10-s + (0.155 − 2.12i)11-s + (−0.201 + 0.116i)12-s + (1.19 + 0.708i)13-s + (−0.108 − 0.311i)14-s + (0.132 + 0.107i)15-s + (0.0739 + 0.461i)16-s + (0.433 + 0.112i)17-s + ⋯ |
Λ(s)=(=(ΓR(s−23.7i)ΓR(s−1.14i)ΓR(s+7.60i)ΓR(s+17.3i)L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1
|
Sign: |
1
|
Analytic conductor: |
2.02260 |
Root analytic conductor: |
1.19255 |
Rational: |
no |
Arithmetic: |
no |
Primitive: |
yes
|
Self-dual: |
no
|
Selberg data: |
(4, 1, (−23.7804846144i,−1.141485214492i,7.60977421348i,17.31219561542i: ), 1)
|
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−23.39664408, −22.56444137, −20.58138783, −15.40137552, −12.61591034, −4.29441687,
3.69633164, 5.94476917, 8.41565166, 10.97961379, 11.39737080, 13.52308045, 14.44034919, 16.38697267, 18.70071824, 19.66452990, 21.37405546, 23.35958806