L(s) = 1 | + (−1.18 − 0.259i)2-s + (−0.937 − 0.452i)3-s + (0.944 + 0.612i)4-s + (−0.0116 + 0.184i)5-s + (0.989 + 0.777i)6-s + (0.202 + 0.342i)7-s + (−1.68 − 0.609i)8-s + (0.802 + 0.849i)9-s + (0.0616 − 0.214i)10-s + (0.165 + 0.313i)11-s + (−0.608 − 1.00i)12-s + (−0.293 − 0.195i)13-s + (−0.150 − 0.457i)14-s + (0.0944 − 0.167i)15-s + (1.93 + 0.923i)16-s + (−0.155 + 0.605i)17-s + ⋯ |
Λ(s)=(=(ΓR(s−23.3i)ΓR(s−1.78i)ΓR(s+6.25i)ΓR(s+18.8i)L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1
|
Sign: |
1
|
Analytic conductor: |
3.06472 |
Root analytic conductor: |
1.32311 |
Rational: |
no |
Arithmetic: |
no |
Primitive: |
yes
|
Self-dual: |
no
|
Selberg data: |
(4, 1, (−23.3467915216i,−1.78026796581i,6.25689320186i,18.87016628548i: ), 1)
|
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−24.69052130, −23.55793043, −21.29614712, −17.36143583, −15.53523224, −11.57051808, −9.59172868, −0.43794484,
6.20232148, 8.01521872, 9.87251034, 11.46460632, 12.51530713, 15.31800018, 17.07002502, 17.97993013, 19.12128902, 21.30368127, 24.86004591