L(s) = 1 | + (1.25 + 0.746i)2-s + (0.310 − 1.45i)3-s + (0.400 + 1.87i)4-s + (−0.0767 + 0.0627i)5-s + (1.47 − 1.59i)6-s + (−0.540 + 0.326i)7-s + (−0.419 + 1.44i)8-s + (−0.898 − 0.906i)9-s + (−0.143 + 0.0215i)10-s + (−0.382 − 0.203i)11-s + (2.85 − 0.00108i)12-s + (−0.0268 + 0.182i)13-s + (−0.922 + 0.00613i)14-s + (0.0677 + 0.131i)15-s + (−0.718 + 0.339i)16-s + (0.361 + 0.291i)17-s + ⋯ |
Λ(s)=(=(ΓR(s−21.1i)ΓR(s−3.29i)ΓR(s+3.44i)ΓR(s+21.0i)L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1
|
Sign: |
1
|
Analytic conductor: |
3.21079 |
Root analytic conductor: |
1.33860 |
Rational: |
no |
Arithmetic: |
no |
Primitive: |
yes
|
Self-dual: |
no
|
Selberg data: |
(4, 1, (−21.1709752712i,−3.29346016214i,3.44054733534i,21.023888098i: ), 1)
|
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−23.5760440, −22.1860928, −19.8074830, −15.9923107, −14.6742523, −13.2972617, −10.8924504, −9.8163386, −4.9323140,
6.5620540, 8.0103796, 12.4318524, 12.9878376, 14.4237577, 16.4912885, 18.5813021, 22.8439508, 24.2069230