Properties

Label 4-1-1.1-r0e4-m3.29p3.44p21.02m21.17-0
Degree 44
Conductor 11
Sign 11
Analytic cond. 3.210793.21079
Root an. cond. 1.338601.33860
Arithmetic no
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Related objects

Downloads

Learn more

Dirichlet series

L(s)  = 1  + (1.25 + 0.746i)2-s + (0.310 − 1.45i)3-s + (0.400 + 1.87i)4-s + (−0.0767 + 0.0627i)5-s + (1.47 − 1.59i)6-s + (−0.540 + 0.326i)7-s + (−0.419 + 1.44i)8-s + (−0.898 − 0.906i)9-s + (−0.143 + 0.0215i)10-s + (−0.382 − 0.203i)11-s + (2.85 − 0.00108i)12-s + (−0.0268 + 0.182i)13-s + (−0.922 + 0.00613i)14-s + (0.0677 + 0.131i)15-s + (−0.718 + 0.339i)16-s + (0.361 + 0.291i)17-s + ⋯

Functional equation

Λ(s)=(ΓR(s21.1i)ΓR(s3.29i)ΓR(s+3.44i)ΓR(s+21.0i)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\Gamma_{\R}(s-21.1i) \, \Gamma_{\R}(s-3.29i) \, \Gamma_{\R}(s+3.44i) \, \Gamma_{\R}(s+21.0i) \, L(s)\cr=\mathstrut & \,\overline{\Lambda}(1-s)\end{aligned}

Invariants

Degree: 44
Conductor: 11
Sign: 11
Analytic conductor: 3.210793.21079
Root analytic conductor: 1.338601.33860
Rational: no
Arithmetic: no
Primitive: yes
Self-dual: no
Selberg data: (4, 1, (21.1709752712i,3.29346016214i,3.44054733534i,21.023888098i: ), 1)(4,\ 1,\ (-21.1709752712i, -3.29346016214i, 3.44054733534i, 21.023888098i:\ ),\ 1)

Euler product

L(s)=p j=14(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−23.5760440, −22.1860928, −19.8074830, −15.9923107, −14.6742523, −13.2972617, −10.8924504, −9.8163386, −4.9323140, 6.5620540, 8.0103796, 12.4318524, 12.9878376, 14.4237577, 16.4912885, 18.5813021, 22.8439508, 24.2069230

Graph of the ZZ-function along the critical line