L(s) = 1 | + (−0.513 − 0.833i)2-s + (−0.0450 + 1.33i)3-s + (0.0506 + 0.855i)4-s + (−0.0405 − 0.440i)5-s + (1.13 − 0.645i)6-s + (−0.317 + 0.0815i)7-s + (−0.0737 − 0.0491i)8-s + (−0.363 − 0.119i)9-s + (−0.345 + 0.259i)10-s + (0.986 + 0.239i)11-s + (−1.14 + 0.0289i)12-s + (−0.298 − 0.973i)13-s + (0.230 + 0.222i)14-s + (0.587 − 0.0341i)15-s + (−0.0210 + 0.498i)16-s + (−0.151 + 0.392i)17-s + ⋯ |
Λ(s)=(=(ΓR(s+22.4i)ΓR(s+1.20i)ΓR(s−3.81i)ΓR(s−19.8i)L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1
|
Sign: |
1
|
Analytic conductor: |
1.18063 |
Root analytic conductor: |
1.04238 |
Rational: |
no |
Arithmetic: |
no |
Primitive: |
yes
|
Self-dual: |
no
|
Selberg data: |
(4, 1, (22.49640718i,1.201562854542i,−3.81917738186i,−19.8787926526i: ), 1)
|
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−24.954738, −24.180181, −19.252675, −18.443401, −16.793458, −15.064627, −13.455939, −11.663928, −9.323828, −7.150648, −6.535784,
9.030178, 10.510768, 12.277778, 15.316804, 17.035571, 20.847349, 22.365493, 24.915810