Properties

Label 4-1-1.1-r0e4-p1.20m3.82m19.88p22.50-0
Degree 44
Conductor 11
Sign 11
Analytic cond. 1.180631.18063
Root an. cond. 1.042381.04238
Arithmetic no
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Related objects

Downloads

Learn more

Dirichlet series

L(s)  = 1  + (−0.513 − 0.833i)2-s + (−0.0450 + 1.33i)3-s + (0.0506 + 0.855i)4-s + (−0.0405 − 0.440i)5-s + (1.13 − 0.645i)6-s + (−0.317 + 0.0815i)7-s + (−0.0737 − 0.0491i)8-s + (−0.363 − 0.119i)9-s + (−0.345 + 0.259i)10-s + (0.986 + 0.239i)11-s + (−1.14 + 0.0289i)12-s + (−0.298 − 0.973i)13-s + (0.230 + 0.222i)14-s + (0.587 − 0.0341i)15-s + (−0.0210 + 0.498i)16-s + (−0.151 + 0.392i)17-s + ⋯

Functional equation

Λ(s)=(ΓR(s+22.4i)ΓR(s+1.20i)ΓR(s3.81i)ΓR(s19.8i)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\Gamma_{\R}(s+22.4i) \, \Gamma_{\R}(s+1.20i) \, \Gamma_{\R}(s-3.81i) \, \Gamma_{\R}(s-19.8i) \, L(s)\cr=\mathstrut & \,\overline{\Lambda}(1-s)\end{aligned}

Invariants

Degree: 44
Conductor: 11
Sign: 11
Analytic conductor: 1.180631.18063
Root analytic conductor: 1.042381.04238
Rational: no
Arithmetic: no
Primitive: yes
Self-dual: no
Selberg data: (4, 1, (22.49640718i,1.201562854542i,3.81917738186i,19.8787926526i: ), 1)(4,\ 1,\ (22.49640718i, 1.201562854542i, -3.81917738186i, -19.8787926526i:\ ),\ 1)

Euler product

L(s)=p j=14(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−24.954738, −24.180181, −19.252675, −18.443401, −16.793458, −15.064627, −13.455939, −11.663928, −9.323828, −7.150648, −6.535784, 9.030178, 10.510768, 12.277778, 15.316804, 17.035571, 20.847349, 22.365493, 24.915810

Graph of the ZZ-function along the critical line