L(s) = 1 | + (−0.191 − 0.389i)2-s + (0.0834 + 1.28i)3-s + (−0.375 + 0.149i)4-s + (0.557 + 0.0152i)5-s + (0.486 − 0.279i)6-s + (−0.307 − 0.580i)7-s + (−0.0116 + 0.608i)8-s + (−0.0815 + 0.215i)9-s + (−0.100 − 0.220i)10-s + (−0.514 − 0.676i)11-s + (−0.223 − 0.471i)12-s + (0.718 + 0.942i)13-s + (−0.167 + 0.230i)14-s + (0.0268 + 0.719i)15-s + (−0.474 − 0.150i)16-s + (0.690 − 0.132i)17-s + ⋯ |
Λ(s)=(=(ΓR(s+21.2i)ΓR(s+1.49i)ΓR(s−4.26i)ΓR(s−18.4i)L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1
|
Sign: |
1
|
Analytic conductor: |
1.51070 |
Root analytic conductor: |
1.10865 |
Rational: |
no |
Arithmetic: |
no |
Primitive: |
yes
|
Self-dual: |
no
|
Selberg data: |
(4, 1, (21.2021329724i,1.490163268882i,−4.2609146966i,−18.43138154474i: ), 1)
|
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−24.94483471, −23.28270845, −18.69489724, −17.86686196, −15.55370998, −13.45103740, −12.52574938, −9.75443634, −7.76611026, −6.12063354,
9.30431542, 10.77704704, 13.75368079, 16.16324808, 20.85816701, 21.83756915, 23.60388982