L(s) = 1 | + (−0.0231 + 0.218i)2-s + (0.725 + 0.511i)3-s + (−1.24 − 0.0101i)4-s + (0.459 + 0.798i)5-s + (−0.128 + 0.146i)6-s + (1.08 − 0.509i)7-s + (0.0356 − 0.751i)8-s + (−0.547 + 0.742i)9-s + (−0.184 + 0.0819i)10-s + (0.254 + 0.0145i)11-s + (−0.898 − 0.644i)12-s + (0.0585 − 0.494i)13-s + (0.0862 + 0.247i)14-s + (−0.0749 + 0.814i)15-s + (0.704 + 0.0373i)16-s + (0.117 + 0.897i)17-s + ⋯ |
Λ(s)=(=(ΓR(s+22.0i)ΓR(s+1.62i)ΓR(s−4.25i)ΓR(s−19.4i)L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1
|
Sign: |
1
|
Analytic conductor: |
1.83941 |
Root analytic conductor: |
1.16458 |
Rational: |
no |
Arithmetic: |
no |
Primitive: |
yes
|
Self-dual: |
no
|
Selberg data: |
(4, 1, (22.0947457086i,1.628025115328i,−4.25436733726i,−19.4684034867i: ), 1)
|
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−24.00378304, −20.46928041, −18.43867388, −17.31901118, −14.43542522, −13.61952832, −11.93300114, −9.12479214, −8.42792671, −5.04136528,
8.46570807, 10.34402271, 13.74282677, 14.67734871, 17.60702206, 21.68550847, 23.07879845