Properties

Label 4-1-1.1-r0e4-p1.69m4.66m16.94p19.92-0
Degree 44
Conductor 11
Sign 11
Analytic cond. 1.644471.64447
Root an. cond. 1.132411.13241
Arithmetic no
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Related objects

Downloads

Learn more

Dirichlet series

L(s)  = 1  + (0.0582 − 0.197i)2-s + (−0.382 + 1.42i)3-s + (0.573 − 0.0229i)4-s + (−0.129 − 0.576i)5-s + (0.259 + 0.158i)6-s + (−0.00648 + 0.436i)7-s + (0.122 − 0.0372i)8-s + (−0.664 − 1.09i)9-s + (−0.121 − 0.00794i)10-s + (0.308 + 0.472i)11-s + (−0.186 + 0.826i)12-s + (−0.238 − 0.170i)13-s + (0.0858 + 0.0267i)14-s + (0.871 + 0.0350i)15-s + (−0.609 − 0.0403i)16-s + (0.792 − 0.305i)17-s + ⋯

Functional equation

Λ(s)=(ΓR(s+19.9i)ΓR(s+1.68i)ΓR(s4.66i)ΓR(s16.9i)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\Gamma_{\R}(s+19.9i) \, \Gamma_{\R}(s+1.68i) \, \Gamma_{\R}(s-4.66i) \, \Gamma_{\R}(s-16.9i) \, L(s)\cr=\mathstrut & \,\overline{\Lambda}(1-s)\end{aligned}

Invariants

Degree: 44
Conductor: 11
Sign: 11
Analytic conductor: 1.644471.64447
Root analytic conductor: 1.132411.13241
Rational: no
Arithmetic: no
Primitive: yes
Self-dual: no
Selberg data: (4, 1, (19.91852255416i,1.685122031456i,4.66217749248i,16.94146709314i: ), 1)(4,\ 1,\ (19.91852255416i, 1.685122031456i, -4.66217749248i, -16.94146709314i:\ ),\ 1)

Euler product

L(s)=p j=14(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−24.888105826, −24.118722660, −22.623360609, −18.570212028, −16.531522798, −14.144390623, −12.483164499, −10.906249272, −7.605965466, −6.485730757, 9.696292750, 11.751809942, 15.511258986, 20.319738275, 21.360091279, 22.737784517, 24.456683572

Graph of the ZZ-function along the critical line