L(s) = 1 | + (0.0582 − 0.197i)2-s + (−0.382 + 1.42i)3-s + (0.573 − 0.0229i)4-s + (−0.129 − 0.576i)5-s + (0.259 + 0.158i)6-s + (−0.00648 + 0.436i)7-s + (0.122 − 0.0372i)8-s + (−0.664 − 1.09i)9-s + (−0.121 − 0.00794i)10-s + (0.308 + 0.472i)11-s + (−0.186 + 0.826i)12-s + (−0.238 − 0.170i)13-s + (0.0858 + 0.0267i)14-s + (0.871 + 0.0350i)15-s + (−0.609 − 0.0403i)16-s + (0.792 − 0.305i)17-s + ⋯ |
Λ(s)=(=(ΓR(s+19.9i)ΓR(s+1.68i)ΓR(s−4.66i)ΓR(s−16.9i)L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1
|
Sign: |
1
|
Analytic conductor: |
1.64447 |
Root analytic conductor: |
1.13241 |
Rational: |
no |
Arithmetic: |
no |
Primitive: |
yes
|
Self-dual: |
no
|
Selberg data: |
(4, 1, (19.91852255416i,1.685122031456i,−4.66217749248i,−16.94146709314i: ), 1)
|
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−24.888105826, −24.118722660, −22.623360609, −18.570212028, −16.531522798, −14.144390623, −12.483164499, −10.906249272, −7.605965466, −6.485730757,
9.696292750, 11.751809942, 15.511258986, 20.319738275, 21.360091279, 22.737784517, 24.456683572