L(s) = 1 | + (0.553 + 0.741i)2-s + (−0.00758 + 0.0796i)3-s + (−0.0630 + 0.820i)4-s + (−0.564 − 0.0667i)5-s + (−0.0632 + 0.0384i)6-s + (1.33 + 0.273i)7-s + (0.00997 − 0.200i)8-s + (−0.504 − 0.00120i)9-s + (−0.263 − 0.455i)10-s + (−0.578 − 0.551i)11-s + (−0.0648 − 0.0112i)12-s + (0.0593 + 0.523i)13-s + (0.534 + 1.13i)14-s + (0.00959 − 0.0444i)15-s + (−0.00150 + 0.0438i)16-s + (−0.108 − 0.782i)17-s + ⋯ |
Λ(s)=(=(ΓR(s+21.0i)ΓR(s+1.95i)ΓR(s−4.74i)ΓR(s−18.2i)L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1
|
Sign: |
1
|
Analytic conductor: |
2.22489 |
Root analytic conductor: |
1.22131 |
Rational: |
no |
Arithmetic: |
no |
Primitive: |
yes
|
Self-dual: |
no
|
Selberg data: |
(4, 1, (21.0013177272i,1.95152402253i,−4.74207909766i,−18.21076265204i: ), 1)
|
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−24.22162400, −23.04708087, −20.02707661, −17.71380605, −15.15629091, −13.74444211, −11.75536751, −10.69204911, −7.97514359, −4.91033784,
7.97811213, 11.64270161, 14.04564600, 15.98081824, 20.98395063, 22.63590375, 24.06263678, 24.98876898