Properties

Label 4-156e2-1.1-c0e2-0-1
Degree $4$
Conductor $24336$
Sign $1$
Analytic cond. $0.00606126$
Root an. cond. $0.279023$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 3·7-s + 13-s − 3·21-s − 2·25-s − 27-s + 39-s + 43-s + 5·49-s − 61-s + 3·67-s − 2·75-s + 2·79-s − 81-s − 3·91-s − 3·97-s − 2·103-s + 121-s + 127-s + 129-s + 131-s + 137-s + 139-s + 5·147-s + 149-s + 151-s + 157-s + ⋯
L(s)  = 1  + 3-s − 3·7-s + 13-s − 3·21-s − 2·25-s − 27-s + 39-s + 43-s + 5·49-s − 61-s + 3·67-s − 2·75-s + 2·79-s − 81-s − 3·91-s − 3·97-s − 2·103-s + 121-s + 127-s + 129-s + 131-s + 137-s + 139-s + 5·147-s + 149-s + 151-s + 157-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 24336 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 24336 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(24336\)    =    \(2^{4} \cdot 3^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(0.00606126\)
Root analytic conductor: \(0.279023\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 24336,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.4455603123\)
\(L(\frac12)\) \(\approx\) \(0.4455603123\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 - T + T^{2} \)
13$C_2$ \( 1 - T + T^{2} \)
good5$C_2$ \( ( 1 + T^{2} )^{2} \)
7$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T + T^{2} ) \)
11$C_2^2$ \( 1 - T^{2} + T^{4} \)
17$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
19$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
23$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
29$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
31$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
37$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
41$C_2^2$ \( 1 - T^{2} + T^{4} \)
43$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
47$C_2$ \( ( 1 + T^{2} )^{2} \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
59$C_2^2$ \( 1 - T^{2} + T^{4} \)
61$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
67$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 - T + T^{2} ) \)
71$C_2^2$ \( 1 - T^{2} + T^{4} \)
73$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
79$C_2$ \( ( 1 - T + T^{2} )^{2} \)
83$C_2$ \( ( 1 + T^{2} )^{2} \)
89$C_2^2$ \( 1 - T^{2} + T^{4} \)
97$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T + T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.43111917067443547735996430892, −13.11066454330643133217378373806, −12.45387249420584484868636108718, −12.28733419582657825827766868545, −11.41258448051578421724452971916, −10.87660384265640667311897605330, −10.18635749576821935761579769862, −9.667579767592970193870959874302, −9.389480359653358310654892606827, −9.105122860991939043180327958175, −8.223971225401279315001007961967, −7.894287135814863885404921979025, −6.94582858277365901104668311046, −6.59656033850122451083982270329, −5.93563344263929587012050905226, −5.60227233306496467173250173876, −3.99115487950912698917785695222, −3.69870776589072460284248660167, −3.09022774863972417593056188441, −2.35151379692584231952318327679, 2.35151379692584231952318327679, 3.09022774863972417593056188441, 3.69870776589072460284248660167, 3.99115487950912698917785695222, 5.60227233306496467173250173876, 5.93563344263929587012050905226, 6.59656033850122451083982270329, 6.94582858277365901104668311046, 7.894287135814863885404921979025, 8.223971225401279315001007961967, 9.105122860991939043180327958175, 9.389480359653358310654892606827, 9.667579767592970193870959874302, 10.18635749576821935761579769862, 10.87660384265640667311897605330, 11.41258448051578421724452971916, 12.28733419582657825827766868545, 12.45387249420584484868636108718, 13.11066454330643133217378373806, 13.43111917067443547735996430892

Graph of the $Z$-function along the critical line