Properties

Label 24.12.0-4.b.1.3
Level 2424
Index 1212
Genus 00
Analytic rank 00
Cusps 33
Q\Q-cusps 11

Related objects

Downloads

Learn more

Invariants

Level: 2424 SL2\SL_2-level: 88
Index: 1212 PSL2\PSL_2-index:66
Genus: 0=1+6120403320 = 1 + \frac{ 6 }{12} - \frac{ 0 }{4} - \frac{ 0 }{3} - \frac{ 3 }{2}
Cusps: 33 (of which 11 is rational) Cusp widths 1241^{2}\cdot4 Cusp orbits 121\cdot2
Elliptic points: 00 of order 22 and 00 of order 33
Q\Q-gonality: 11
Q\overline{\Q}-gonality: 11
Rational cusps: 11
Rational CM points: yes (D=\quad(D = 4-4)

Other labels

Cummins and Pauli (CP) label: 4B0
Rouse, Sutherland, and Zureick-Brown (RSZB) label: 24.12.0.28

Level structure

GL2(Z/24Z)\GL_2(\Z/24\Z)-generators: [512021]\begin{bmatrix}5&1\\20&21\end{bmatrix}, [116217]\begin{bmatrix}11&6\\2&17\end{bmatrix}, [111461]\begin{bmatrix}11&14\\6&1\end{bmatrix}, [1313813]\begin{bmatrix}13&13\\8&13\end{bmatrix}
Contains I-I: no \quad (see 4.6.0.b.1 for the level structure with I-I)
Cyclic 24-isogeny field degree: 1616
Cyclic 24-torsion field degree: 128128
Full 24-torsion field degree: 61446144

Models

This modular curve is isomorphic to P1\mathbb{P}^1.

Rational points

This modular curve has infinitely many rational points, including 11629 stored non-cuspidal points.

Maps to other modular curves

jj-invariant map of degree 6 to the modular curve X(1)X(1) :

j\displaystyle j == x6(x2+48y2)3y4x6(x2+64y2)\displaystyle \frac{x^6 (x^2+48 y^2)^3}{y^4 x^6 (x^2+64 y^2)}

Modular covers

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus
24.24.0-4.a.1.3 2424 22 22 00
24.24.0-4.c.1.2 2424 22 22 00
24.24.0-8.c.1.2 2424 22 22 00
24.24.0-12.e.1.2 2424 22 22 00
24.24.0-12.f.1.2 2424 22 22 00
24.24.0-8.h.1.1 2424 22 22 00
24.24.0-24.m.1.1 2424 22 22 00
24.24.0-24.p.1.1 2424 22 22 00
24.36.1-12.b.1.5 2424 33 33 11
24.48.0-12.f.1.7 2424 44 44 00
72.324.10-36.c.1.4 7272 2727 2727 1010
120.24.0-20.e.1.3 120120 22 22 00
120.24.0-60.e.1.6 120120 22 22 00
120.24.0-20.f.1.3 120120 22 22 00
120.24.0-60.f.1.8 120120 22 22 00
120.24.0-40.m.1.3 120120 22 22 00
120.24.0-120.m.1.2 120120 22 22 00
120.24.0-40.p.1.3 120120 22 22 00
120.24.0-120.p.1.2 120120 22 22 00
120.60.2-20.b.1.1 120120 55 55 22
120.72.1-20.b.1.11 120120 66 66 11
120.120.3-20.b.1.11 120120 1010 1010 33
168.24.0-28.e.1.2 168168 22 22 00
168.24.0-84.e.1.6 168168 22 22 00
168.24.0-28.f.1.2 168168 22 22 00
168.24.0-84.f.1.8 168168 22 22 00
168.24.0-56.m.1.2 168168 22 22 00
168.24.0-168.m.1.5 168168 22 22 00
168.24.0-56.p.1.2 168168 22 22 00
168.24.0-168.p.1.7 168168 22 22 00
168.96.2-28.b.1.11 168168 88 88 22
168.252.7-28.b.1.15 168168 2121 2121 77
168.336.9-28.b.1.15 168168 2828 2828 99
264.24.0-44.e.1.3 264264 22 22 00
264.24.0-132.e.1.6 264264 22 22 00
264.24.0-44.f.1.1 264264 22 22 00
264.24.0-132.f.1.8 264264 22 22 00
264.24.0-88.m.1.3 264264 22 22 00
264.24.0-264.m.1.5 264264 22 22 00
264.24.0-88.p.1.3 264264 22 22 00
264.24.0-264.p.1.5 264264 22 22 00
264.144.4-44.b.1.13 264264 1212 1212 44
312.24.0-52.e.1.2 312312 22 22 00
312.24.0-156.e.1.7 312312 22 22 00
312.24.0-52.f.1.2 312312 22 22 00
312.24.0-156.f.1.8 312312 22 22 00
312.24.0-104.m.1.2 312312 22 22 00
312.24.0-312.m.1.5 312312 22 22 00
312.24.0-104.p.1.2 312312 22 22 00
312.24.0-312.p.1.3 312312 22 22 00
312.168.5-52.b.1.9 312312 1414 1414 55