Properties

Label 56.6.0.a.1
Level $56$
Index $6$
Genus $0$
Analytic rank $0$
Cusps $3$
$\Q$-cusps $1$

Related objects

Downloads

Learn more

Invariants

Level: $56$ $\SL_2$-level: $2$
Index: $6$ $\PSL_2$-index:$6$
Genus: $0 = 1 + \frac{ 6 }{12} - \frac{ 0 }{4} - \frac{ 0 }{3} - \frac{ 3 }{2}$
Cusps: $3$ (of which $1$ is rational) Cusp widths $2^{3}$ Cusp orbits $1\cdot2$
Elliptic points: $0$ of order $2$ and $0$ of order $3$
$\Q$-gonality: $1$
$\overline{\Q}$-gonality: $1$
Rational cusps: $1$
Rational CM points: yes $\quad(D =$ $-4$)

Other labels

Cummins and Pauli (CP) label: 2C0
Rouse, Sutherland, and Zureick-Brown (RSZB) label: 56.6.0.6

Level structure

$\GL_2(\Z/56\Z)$-generators: $\begin{bmatrix}12&15\\41&40\end{bmatrix}$, $\begin{bmatrix}15&44\\24&19\end{bmatrix}$, $\begin{bmatrix}32&7\\19&6\end{bmatrix}$, $\begin{bmatrix}51&20\\22&55\end{bmatrix}$
Contains $-I$: yes
Quadratic refinements: none in database
Cyclic 56-isogeny field degree: $32$
Cyclic 56-torsion field degree: $768$
Full 56-torsion field degree: $516096$

Models

This modular curve is isomorphic to $\mathbb{P}^1$.

Rational points

This modular curve has infinitely many rational points, including 2940 stored non-cuspidal points.

Maps to other modular curves

$j$-invariant map of degree 6 to the modular curve $X(1)$ :

$\displaystyle j$ $=$ $\displaystyle \frac{2^6}{3^2\cdot7}\cdot\frac{(48x-y)^{6}(52992x^{2}+5856xy+191y^{2})^{3}}{(16x+y)^{2}(48x-y)^{6}(11520x^{2}+2208xy+61y^{2})^{2}}$

Modular covers

Sorry, your browser does not support the nearby lattice.

Cover information

Click on a modular curve in the diagram to see information about it.

This modular curve minimally covers the modular curves listed below.

Covered curve Level Index Degree Genus Rank
$X_0(2)$ $2$ $2$ $2$ $0$ $0$
56.2.0.a.1 $56$ $3$ $3$ $0$ $0$

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus
56.12.0.m.1 $56$ $2$ $2$ $0$
56.12.0.o.1 $56$ $2$ $2$ $0$
56.12.0.s.1 $56$ $2$ $2$ $0$
56.12.0.u.1 $56$ $2$ $2$ $0$
56.12.0.bd.1 $56$ $2$ $2$ $0$
56.12.0.be.1 $56$ $2$ $2$ $0$
56.12.0.bj.1 $56$ $2$ $2$ $0$
56.12.0.bk.1 $56$ $2$ $2$ $0$
56.48.2.l.1 $56$ $8$ $8$ $2$
56.126.7.e.1 $56$ $21$ $21$ $7$
56.168.9.q.1 $56$ $28$ $28$ $9$
168.12.0.bo.1 $168$ $2$ $2$ $0$
168.12.0.bq.1 $168$ $2$ $2$ $0$
168.12.0.bu.1 $168$ $2$ $2$ $0$
168.12.0.bw.1 $168$ $2$ $2$ $0$
168.12.0.db.1 $168$ $2$ $2$ $0$
168.12.0.dc.1 $168$ $2$ $2$ $0$
168.12.0.dh.1 $168$ $2$ $2$ $0$
168.12.0.di.1 $168$ $2$ $2$ $0$
168.18.1.a.1 $168$ $3$ $3$ $1$
168.24.0.fg.1 $168$ $4$ $4$ $0$
280.12.0.bo.1 $280$ $2$ $2$ $0$
280.12.0.bq.1 $280$ $2$ $2$ $0$
280.12.0.bu.1 $280$ $2$ $2$ $0$
280.12.0.bw.1 $280$ $2$ $2$ $0$
280.12.0.db.1 $280$ $2$ $2$ $0$
280.12.0.dc.1 $280$ $2$ $2$ $0$
280.12.0.dh.1 $280$ $2$ $2$ $0$
280.12.0.di.1 $280$ $2$ $2$ $0$
280.30.2.a.1 $280$ $5$ $5$ $2$
280.36.1.a.1 $280$ $6$ $6$ $1$
280.60.3.ds.1 $280$ $10$ $10$ $3$