Properties

Label 7.28.0.a.1
Level 77
Index 2828
Genus 00
Analytic rank 00
Cusps 44
Q\Q-cusps 11

Related objects

Downloads

Learn more

Invariants

Level: 77 SL2\SL_2-level: 77
Index: 2828 PSL2\PSL_2-index:2828
Genus: 0=1+28124413420 = 1 + \frac{ 28 }{12} - \frac{ 4 }{4} - \frac{ 1 }{3} - \frac{ 4 }{2}
Cusps: 44 (of which 11 is rational) Cusp widths 747^{4} Cusp orbits 131\cdot3
Elliptic points: 44 of order 22 and 11 of order 33
Q\Q-gonality: 11
Q\overline{\Q}-gonality: 11
Rational cusps: 11
Rational CM points: yes (D=\quad(D = 3,12,19,27-3,-12,-19,-27)

Other labels

Cummins and Pauli (CP) label: 7F0
Sutherland and Zywina (SZ) label: 7F0-7a
Rouse, Sutherland, and Zureick-Brown (RSZB) label: 7.28.0.1
Sutherland (S) label: 7Ns

Level structure

GL2(Z/7Z)\GL_2(\Z/7\Z)-generators: [0340]\begin{bmatrix}0&3\\4&0\end{bmatrix}, [1005]\begin{bmatrix}1&0\\0&5\end{bmatrix}
GL2(Z/7Z)\GL_2(\Z/7\Z)-subgroup: C6C2C_6\wr C_2
Contains I-I: yes
Quadratic refinements: none in database
Cyclic 7-isogeny field degree: 22
Cyclic 7-torsion field degree: 1212
Full 7-torsion field degree: 7272

Models

This modular curve is isomorphic to P1\mathbb{P}^1.

Rational points

This modular curve has infinitely many rational points, including 11 stored non-cuspidal points.

Maps to other modular curves

jj-invariant map of degree 28 to the modular curve X(1)X(1) :

j\displaystyle j == 127(xy)29(x+y)3(x212xy+15y2)3(x212xy+43y2)3(x414x3y+68x2y2154xy3+211y4)3y7(xy)28(x311x2y+31xy213y3)7\displaystyle \frac{1}{2^7}\cdot\frac{(x-y)^{29} (x+y)^{3} (x^{2}-12 x y+15 y^{2})^{3} (x^{2}-12 x y+43 y^{2})^{3} (x^{4}-14 x^{3} y+68 x^{2} y^{2}-154 x y^{3}+211 y^{4})^{3}}{y^{7} (x-y)^{28} (x^{3}-11 x^{2} y+31 x y^{2}-13 y^{3})^{7}}

Modular covers

Sorry, your browser does not support the nearby lattice.

Cover information

Click on a modular curve in the diagram to see information about it.

This modular curve minimally covers the modular curves listed below.

Covered curve Level Index Degree Genus Rank
X(1)X(1) 11 2828 2828 00 00

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus
Xsp(7)X_{\mathrm{sp}}(7) 77 22 22 11
7.56.1.b.1 77 22 22 11
7.84.1.a.1 77 33 33 11
14.56.1.a.1 1414 22 22 11
14.56.1.b.1 1414 22 22 11
14.56.3.a.1 1414 22 22 33
14.56.3.b.1 1414 22 22 33
14.84.3.a.1 1414 33 33 33
21.56.1.a.1 2121 22 22 11
21.56.1.b.1 2121 22 22 11
21.84.3.a.1 2121 33 33 33
21.112.6.a.1 2121 44 44 66
28.56.1.a.1 2828 22 22 11
28.56.1.b.1 2828 22 22 11
28.56.1.c.1 2828 22 22 11
28.56.1.d.1 2828 22 22 11
28.56.3.a.1 2828 22 22 33
28.56.3.b.1 2828 22 22 33
28.112.6.a.1 2828 44 44 66
35.56.1.a.1 3535 22 22 11
35.56.1.b.1 3535 22 22 11
35.140.9.a.1 3535 55 55 99
35.168.9.a.1 3535 66 66 99
35.280.18.a.1 3535 1010 1010 1818
42.56.1.a.1 4242 22 22 11
42.56.1.b.1 4242 22 22 11
42.56.3.a.1 4242 22 22 33
42.56.3.b.1 4242 22 22 33
49.196.9.a.1 4949 77 77 99
Xsp+(49)X_{\mathrm{sp}}^+(49) 4949 4949 4949 9494
56.56.1.a.1 5656 22 22 11
56.56.1.b.1 5656 22 22 11
56.56.1.c.1 5656 22 22 11
56.56.1.d.1 5656 22 22 11
56.56.1.e.1 5656 22 22 11
56.56.1.f.1 5656 22 22 11
56.56.1.g.1 5656 22 22 11
56.56.1.h.1 5656 22 22 11
56.56.3.a.1 5656 22 22 33
56.56.3.b.1 5656 22 22 33
56.56.3.c.1 5656 22 22 33
56.56.3.d.1 5656 22 22 33
63.756.54.a.1 6363 2727 2727 5454
70.56.1.a.1 7070 22 22 11
70.56.1.b.1 7070 22 22 11
70.56.3.a.1 7070 22 22 33
70.56.3.b.1 7070 22 22 33
77.56.1.a.1 7777 22 22 11
77.56.1.b.1 7777 22 22 11
84.56.1.a.1 8484 22 22 11
84.56.1.b.1 8484 22 22 11
84.56.1.c.1 8484 22 22 11
84.56.1.d.1 8484 22 22 11
84.56.3.a.1 8484 22 22 33
84.56.3.b.1 8484 22 22 33
91.56.1.a.1 9191 22 22 11
91.56.1.b.1 9191 22 22 11
105.56.1.a.1 105105 22 22 11
105.56.1.b.1 105105 22 22 11
119.56.1.a.1 119119 22 22 11
119.56.1.b.1 119119 22 22 11
133.56.1.a.1 133133 22 22 11
133.56.1.b.1 133133 22 22 11
140.56.1.a.1 140140 22 22 11
140.56.1.b.1 140140 22 22 11
140.56.1.c.1 140140 22 22 11
140.56.1.d.1 140140 22 22 11
140.56.3.a.1 140140 22 22 33
140.56.3.b.1 140140 22 22 33
154.56.1.a.1 154154 22 22 11
154.56.1.b.1 154154 22 22 11
154.56.3.a.1 154154 22 22 33
154.56.3.b.1 154154 22 22 33
161.56.1.a.1 161161 22 22 11
161.56.1.b.1 161161 22 22 11
168.56.1.a.1 168168 22 22 11
168.56.1.b.1 168168 22 22 11
168.56.1.c.1 168168 22 22 11
168.56.1.d.1 168168 22 22 11
168.56.1.e.1 168168 22 22 11
168.56.1.f.1 168168 22 22 11
168.56.1.g.1 168168 22 22 11
168.56.1.h.1 168168 22 22 11
168.56.3.a.1 168168 22 22 33
168.56.3.b.1 168168 22 22 33
168.56.3.c.1 168168 22 22 33
168.56.3.d.1 168168 22 22 33
182.56.1.g.1 182182 22 22 11
182.56.1.h.1 182182 22 22 11
182.56.3.a.1 182182 22 22 33
182.56.3.b.1 182182 22 22 33
203.56.1.a.1 203203 22 22 11
203.56.1.b.1 203203 22 22 11
210.56.1.a.1 210210 22 22 11
210.56.1.b.1 210210 22 22 11
210.56.3.a.1 210210 22 22 33
210.56.3.b.1 210210 22 22 33
217.56.1.a.1 217217 22 22 11
217.56.1.b.1 217217 22 22 11
231.56.1.a.1 231231 22 22 11
231.56.1.b.1 231231 22 22 11
238.56.1.a.1 238238 22 22 11
238.56.1.b.1 238238 22 22 11
238.56.3.a.1 238238 22 22 33
238.56.3.b.1 238238 22 22 33
259.56.1.a.1 259259 22 22 11
259.56.1.b.1 259259 22 22 11
266.56.1.a.1 266266 22 22 11
266.56.1.b.1 266266 22 22 11
266.56.3.a.1 266266 22 22 33
266.56.3.b.1 266266 22 22 33
273.56.1.a.1 273273 22 22 11
273.56.1.b.1 273273 22 22 11
280.56.1.a.1 280280 22 22 11
280.56.1.b.1 280280 22 22 11
280.56.1.c.1 280280 22 22 11
280.56.1.d.1 280280 22 22 11
280.56.1.e.1 280280 22 22 11
280.56.1.f.1 280280 22 22 11
280.56.1.g.1 280280 22 22 11
280.56.1.h.1 280280 22 22 11
280.56.3.a.1 280280 22 22 33
280.56.3.b.1 280280 22 22 33
280.56.3.c.1 280280 22 22 33
280.56.3.d.1 280280 22 22 33
287.56.1.a.1 287287 22 22 11
287.56.1.b.1 287287 22 22 11
301.56.1.a.1 301301 22 22 11
301.56.1.b.1 301301 22 22 11
308.56.1.a.1 308308 22 22 11
308.56.1.b.1 308308 22 22 11
308.56.1.c.1 308308 22 22 11
308.56.1.d.1 308308 22 22 11
308.56.3.a.1 308308 22 22 33
308.56.3.b.1 308308 22 22 33
322.56.1.a.1 322322 22 22 11
322.56.1.b.1 322322 22 22 11
322.56.3.a.1 322322 22 22 33
322.56.3.b.1 322322 22 22 33
329.56.1.a.1 329329 22 22 11
329.56.1.b.1 329329 22 22 11