Learn more

Label Description
1.1.0.a.1 X(1)X(1), the first modular curve
2.6.0.a.1 X(2)X(2), parameterizes twists of Legendre elliptic curves
4.12.0-2.a.1.1 Parameterizes Legendre elliptic curves
4.16.0-4.b.1.1 Parameterizes elliptic curves with same 22- and 44-division fields
4.24.0-4.b.1.3 X1(2,4)X_1(2,4)
5.120.0-5.a.1.2 Xarith(5)X_{\mathrm{arith}}(5), studied by Klein, icosahedral symmetry
6.48.0-6.a.1.1 X1(2,6)X_1(2,6)
7.336.3-7.b.1.2 Xarith(7)X_{\textup{arith}}(7), isomorphic to the Klein quartic
8.12.1.c.1 A modular curve that is a rational point on itself
8.12.1.d.1 A modular curve that is a rational point on itself
8.96.0-8.l.2.2 X1(2,8)X_1(2,8), parametrizes elliptic curves with largest possible torsion subgroup
8.384.5-8.d.1.1 Xarith(8)X_{\textup{arith}}(8), isomorphic to the Wiman curve
11.12.1.a.1 X0(11)X_0(11), the first X0(N)X_0(N) of positive genus
11.55.1.b.1 Xns+(11)X_{\textup{ns}}^+(11), the first positive rank modular curve
11.120.1-11.a.2.2 X1(11)X_1(11), the first X1(N)X_1(N) of positive genus
12.12.1-6.a.1.3 Parametrizes elliptic curves whose discriminant is a 12th power
13.78.3.a.1 Xns+(13)X_{\mathrm{ns}}^+(13), has a non-modular isomorphism to Xsp+(13)X_{\mathrm{sp}}^+(13)
13.91.3.b.1 Xsp+(13)X_{\mathrm{sp}}^+(13), has a non-modular isomorphism to Xns+(13)X_{\mathrm{ns}}^+(13)
13.168.2-13.b.2.2 X1(13)X_1(13), one of the three X1(N)X_1(N) of genus 22
15.24.1.a.1 X0(15)X_0(15), used in proof of Fermat's Last Theorem
15.192.1-15.b.2.4 X1(15)X_1(15), the last X1(N)X_1(N) of genus 11
16.24.1.n.2 Infinitely many rational points, but none with 2-adic image of index 24
16.192.2-16.l.1.1 X1(16)X_1(16), one of the three X1(N)X_1(N) of genus 22
18.216.2-18.d.1.1 X1(18)X_1(18), one of the three X1(N)X_1(N) of genus 22
21.384.5-21.c.1.4 X1(21)X_1(21), has a sporadic degree 33 point
25.150.4.b.1 A genus 4 curve whose Jacobian has a rational point of order 71
27.36.1.a.1 X0(27)X_0(27), isomorphic to the Fermat cubic
34.54.3.a.1 X0(34)X_0(34), the first X0(N)X_0(N) of gonality 3
36.72.1.c.1 X0(36)X_0(36), a.k.a. y2=x3+1y^2=x^3+1
37.38.2.a.1 X0(37)X_0(37)
38.60.4.a.1 X0(38)X_0(38), the first X0(N)X_0(N) of gonality 4
48.144.11.t.1 A genus 11 hyperelliptic curve: y2=x24+64y^{2} = x^{24} + 64.
49.56.1.a.1 X0(49)X_0(49)
60.540.38.bi.1 First known curve of genus 38 whose Jacobian is isogenous to a product of elliptic curves
64.96.3.b.1 X0(64)X_0(64), isomorphic to the Fermat quartic
109.110.8.a.1 X0(109)X_0(109), the only X0(N)X_0(N) of gonality 5 over Q\mathbb Q.