Properties

Label 1027.1.x
Level 10271027
Weight 11
Character orbit 1027.x
Rep. character χ1027(213,)\chi_{1027}(213,\cdot)
Character field Q(ζ12)\Q(\zeta_{12})
Dimension 44
Newform subspaces 11
Sturm bound 9393
Trace bound 00

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1027=1379 1027 = 13 \cdot 79
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1027.x (of order 1212 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 1027 1027
Character field: Q(ζ12)\Q(\zeta_{12})
Newform subspaces: 1 1
Sturm bound: 9393
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M1(1027,[χ])M_{1}(1027, [\chi]).

Total New Old
Modular forms 12 12 0
Cusp forms 4 4 0
Eisenstein series 8 8 0

The following table gives the dimensions of subspaces with specified projective image type.

DnD_n A4A_4 S4S_4 A5A_5
Dimension 0 0 4 0

Trace form

4q2q3+2q52q134q15+2q162q19+2q204q272q292q39+2q48+2q53+4q57+2q604q614q654q672q68+4q71++4q87+O(q100) 4 q - 2 q^{3} + 2 q^{5} - 2 q^{13} - 4 q^{15} + 2 q^{16} - 2 q^{19} + 2 q^{20} - 4 q^{27} - 2 q^{29} - 2 q^{39} + 2 q^{48} + 2 q^{53} + 4 q^{57} + 2 q^{60} - 4 q^{61} - 4 q^{65} - 4 q^{67} - 2 q^{68} + 4 q^{71}+ \cdots + 4 q^{87}+O(q^{100}) Copy content Toggle raw display

Decomposition of S1new(1027,[χ])S_{1}^{\mathrm{new}}(1027, [\chi]) into newform subspaces

Label Char Prim Dim AA Field Image CM RM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
1027.1.x.a 1027.x 1027.x 44 0.5130.513 Q(ζ12)\Q(\zeta_{12}) S4S_{4} None None 1027.1.x.a 00 2-2 22 00 q+ζ124q3ζ125q4+(ζ122ζ125+)q5+q+\zeta_{12}^{4}q^{3}-\zeta_{12}^{5}q^{4}+(\zeta_{12}^{2}-\zeta_{12}^{5}+\cdots)q^{5}+\cdots