Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of M8(Γ0(14)).
|
Total |
New |
Old |
Modular forms
| 16 |
4 |
12 |
Cusp forms
| 12 |
4 |
8 |
Eisenstein series
| 4 |
0 |
4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
2 | 7 | Fricke | | Total | | Cusp | | Eisenstein |
---|
All | New | Old | All | New | Old | All | New | Old |
---|
+ | + | + | | 5 | 1 | 4 | | 4 | 1 | 3 | | 1 | 0 | 1 |
+ | − | − | | 3 | 0 | 3 | | 2 | 0 | 2 | | 1 | 0 | 1 |
− | + | − | | 4 | 1 | 3 | | 3 | 1 | 2 | | 1 | 0 | 1 |
− | − | + | | 4 | 2 | 2 | | 3 | 2 | 1 | | 1 | 0 | 1 |
Plus space | + | | 9 | 3 | 6 | | 7 | 3 | 4 | | 2 | 0 | 2 |
Minus space | − | | 7 | 1 | 6 | | 5 | 1 | 4 | | 2 | 0 | 2 |
Decomposition of S8new(Γ0(14)) into newform subspaces
Decomposition of S8old(Γ0(14)) into lower level spaces