gp: [N,k,chi] = [19,4,Mod(7,19)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(19, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([2]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("19.7");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [4,-1]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 − x 3 + 19 x 2 + 18 x + 324 x^{4} - x^{3} + 19x^{2} + 18x + 324 x 4 − x 3 + 1 9 x 2 + 1 8 x + 3 2 4
x^4 - x^3 + 19*x^2 + 18*x + 324
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
( − ν 3 + 19 ν 2 − 19 ν + 324 ) / 342 ( -\nu^{3} + 19\nu^{2} - 19\nu + 324 ) / 342 ( − ν 3 + 1 9 ν 2 − 1 9 ν + 3 2 4 ) / 3 4 2
(-v^3 + 19*v^2 - 19*v + 324) / 342
β 3 \beta_{3} β 3 = = =
( ν 3 + 37 ) / 19 ( \nu^{3} + 37 ) / 19 ( ν 3 + 3 7 ) / 1 9
(v^3 + 37) / 19
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
β 3 + 18 β 2 + β 1 − 19 \beta_{3} + 18\beta_{2} + \beta _1 - 19 β 3 + 1 8 β 2 + β 1 − 1 9
b3 + 18*b2 + b1 - 19
ν 3 \nu^{3} ν 3 = = =
19 β 3 − 37 19\beta_{3} - 37 1 9 β 3 − 3 7
19*b3 - 37
Character values
We give the values of χ \chi χ on generators for ( Z / 19 Z ) × \left(\mathbb{Z}/19\mathbb{Z}\right)^\times ( Z / 1 9 Z ) × .
n n n
2 2 2
χ ( n ) \chi(n) χ ( n )
− 1 + β 2 -1 + \beta_{2} − 1 + β 2
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 2 4 + T 2 3 + 19 T 2 2 − 18 T 2 + 324 T_{2}^{4} + T_{2}^{3} + 19T_{2}^{2} - 18T_{2} + 324 T 2 4 + T 2 3 + 1 9 T 2 2 − 1 8 T 2 + 3 2 4
T2^4 + T2^3 + 19*T2^2 - 18*T2 + 324
acting on S 4 n e w ( 19 , [ χ ] ) S_{4}^{\mathrm{new}}(19, [\chi]) S 4 n e w ( 1 9 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 + T 3 + ⋯ + 324 T^{4} + T^{3} + \cdots + 324 T 4 + T 3 + ⋯ + 3 2 4
T^4 + T^3 + 19*T^2 - 18*T + 324
3 3 3
( T 2 + T + 1 ) 2 (T^{2} + T + 1)^{2} ( T 2 + T + 1 ) 2
(T^2 + T + 1)^2
5 5 5
T 4 + 19 T 3 + ⋯ + 5184 T^{4} + 19 T^{3} + \cdots + 5184 T 4 + 1 9 T 3 + ⋯ + 5 1 8 4
T^4 + 19*T^3 + 289*T^2 + 1368*T + 5184
7 7 7
( T 2 − 20 T − 192 ) 2 (T^{2} - 20 T - 192)^{2} ( T 2 − 2 0 T − 1 9 2 ) 2
(T^2 - 20*T - 192)^2
11 11 1 1
( T 2 + 33 T + 108 ) 2 (T^{2} + 33 T + 108)^{2} ( T 2 + 3 3 T + 1 0 8 ) 2
(T^2 + 33*T + 108)^2
13 13 1 3
T 4 + 101 T 3 + ⋯ + 4384836 T^{4} + 101 T^{3} + \cdots + 4384836 T 4 + 1 0 1 T 3 + ⋯ + 4 3 8 4 8 3 6
T^4 + 101*T^3 + 8107*T^2 + 211494*T + 4384836
17 17 1 7
T 4 − 75 T 3 + ⋯ + 44116164 T^{4} - 75 T^{3} + \cdots + 44116164 T 4 − 7 5 T 3 + ⋯ + 4 4 1 1 6 1 6 4
T^4 - 75*T^3 + 12267*T^2 + 498150*T + 44116164
19 19 1 9
T 4 − 57 T 3 + ⋯ + 47045881 T^{4} - 57 T^{3} + \cdots + 47045881 T 4 − 5 7 T 3 + ⋯ + 4 7 0 4 5 8 8 1
T^4 - 57*T^3 + 7942*T^2 - 390963*T + 47045881
23 23 2 3
T 4 + T 3 + ⋯ + 27815076 T^{4} + T^{3} + \cdots + 27815076 T 4 + T 3 + ⋯ + 2 7 8 1 5 0 7 6
T^4 + T^3 + 5275*T^2 - 5274*T + 27815076
29 29 2 9
T 4 − 85 T 3 + ⋯ + 833592384 T^{4} - 85 T^{3} + \cdots + 833592384 T 4 − 8 5 T 3 + ⋯ + 8 3 3 5 9 2 3 8 4
T^4 - 85*T^3 + 36097*T^2 + 2454120*T + 833592384
31 31 3 1
( T 2 − 22 T − 536 ) 2 (T^{2} - 22 T - 536)^{2} ( T 2 − 2 2 T − 5 3 6 ) 2
(T^2 - 22*T - 536)^2
37 37 3 7
( T 2 − 448 T + 26524 ) 2 (T^{2} - 448 T + 26524)^{2} ( T 2 − 4 4 8 T + 2 6 5 2 4 ) 2
(T^2 - 448*T + 26524)^2
41 41 4 1
T 4 + 124 T 3 + ⋯ + 14220441 T^{4} + 124 T^{3} + \cdots + 14220441 T 4 + 1 2 4 T 3 + ⋯ + 1 4 2 2 0 4 4 1
T^4 + 124*T^3 + 11605*T^2 + 467604*T + 14220441
43 43 4 3
T 4 − 311 T 3 + ⋯ + 260241424 T^{4} - 311 T^{3} + \cdots + 260241424 T 4 − 3 1 1 T 3 + ⋯ + 2 6 0 2 4 1 4 2 4
T^4 - 311*T^3 + 80589*T^2 - 5017052*T + 260241424
47 47 4 7
T 4 + 411 T 3 + ⋯ + 209438784 T^{4} + 411 T^{3} + \cdots + 209438784 T 4 + 4 1 1 T 3 + ⋯ + 2 0 9 4 3 8 7 8 4
T^4 + 411*T^3 + 154449*T^2 + 5947992*T + 209438784
53 53 5 3
T 4 + ⋯ + 26191538244 T^{4} + \cdots + 26191538244 T 4 + ⋯ + 2 6 1 9 1 5 3 8 2 4 4
T^4 + 261*T^3 + 229959*T^2 - 42239718*T + 26191538244
59 59 5 9
T 4 + ⋯ + 32209121961 T^{4} + \cdots + 32209121961 T 4 + ⋯ + 3 2 2 0 9 1 2 1 9 6 1
T^4 + 204*T^3 + 221085*T^2 - 36611676*T + 32209121961
61 61 6 1
T 4 + ⋯ + 4843603216 T^{4} + \cdots + 4843603216 T 4 + ⋯ + 4 8 4 3 6 0 3 2 1 6
T^4 + 531*T^3 + 212365*T^2 + 36955476*T + 4843603216
67 67 6 7
T 4 + ⋯ + 161337985561 T^{4} + \cdots + 161337985561 T 4 + ⋯ + 1 6 1 3 3 7 9 8 5 5 6 1
T^4 + 556*T^3 + 710805*T^2 - 223327964*T + 161337985561
71 71 7 1
T 4 + ⋯ + 372805494084 T^{4} + \cdots + 372805494084 T 4 + ⋯ + 3 7 2 8 0 5 4 9 4 0 8 4
T^4 + 1563*T^3 + 1832391*T^2 + 954333414*T + 372805494084
73 73 7 3
T 4 + ⋯ + 16291714321 T^{4} + \cdots + 16291714321 T 4 + ⋯ + 1 6 2 9 1 7 1 4 3 2 1
T^4 - 234*T^3 + 182395*T^2 + 29867526*T + 16291714321
79 79 7 9
T 4 − 331 T 3 + ⋯ + 97061904 T^{4} - 331 T^{3} + \cdots + 97061904 T 4 − 3 3 1 T 3 + ⋯ + 9 7 0 6 1 9 0 4
T^4 - 331*T^3 + 99709*T^2 - 3261012*T + 97061904
83 83 8 3
( T 2 − 1459 T + 59112 ) 2 (T^{2} - 1459 T + 59112)^{2} ( T 2 − 1 4 5 9 T + 5 9 1 1 2 ) 2
(T^2 - 1459*T + 59112)^2
89 89 8 9
T 4 + 601 T 3 + ⋯ + 556865604 T^{4} + 601 T^{3} + \cdots + 556865604 T 4 + 6 0 1 T 3 + ⋯ + 5 5 6 8 6 5 6 0 4
T^4 + 601*T^3 + 384799*T^2 - 14182398*T + 556865604
97 97 9 7
T 4 + ⋯ + 1806048395449 T^{4} + \cdots + 1806048395449 T 4 + ⋯ + 1 8 0 6 0 4 8 3 9 5 4 4 9
T^4 - 324*T^3 + 1448869*T^2 + 435421332*T + 1806048395449
show more
show less