Properties

Label 19.4.c.b
Level 1919
Weight 44
Character orbit 19.c
Analytic conductor 1.1211.121
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [19,4,Mod(7,19)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(19, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("19.7"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 19 19
Weight: k k == 4 4
Character orbit: [χ][\chi] == 19.c (of order 33, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.121036290111.12103629011
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q(3,73)\Q(\sqrt{-3}, \sqrt{73})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4x3+19x2+18x+324 x^{4} - x^{3} + 19x^{2} + 18x + 324 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q2β2q3+(β3+10β2+β111)q4+(9β2β1)q5+(β3+β11)q6+(4β3+12)q7+(3β3+21)q8++(78β3+468β2+390)q99+O(q100) q - \beta_1 q^{2} - \beta_{2} q^{3} + (\beta_{3} + 10 \beta_{2} + \beta_1 - 11) q^{4} + ( - 9 \beta_{2} - \beta_1) q^{5} + (\beta_{3} + \beta_1 - 1) q^{6} + ( - 4 \beta_{3} + 12) q^{7} + ( - 3 \beta_{3} + 21) q^{8}+ \cdots + ( - 78 \beta_{3} + 468 \beta_{2} + \cdots - 390) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4qq22q321q419q5q6+40q7+78q8+52q946q1066q11+42q12101q13156q1419q15+39q16+75q1752q18+57q19+858q99+O(q100) 4 q - q^{2} - 2 q^{3} - 21 q^{4} - 19 q^{5} - q^{6} + 40 q^{7} + 78 q^{8} + 52 q^{9} - 46 q^{10} - 66 q^{11} + 42 q^{12} - 101 q^{13} - 156 q^{14} - 19 q^{15} + 39 q^{16} + 75 q^{17} - 52 q^{18} + 57 q^{19}+ \cdots - 858 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4x3+19x2+18x+324 x^{4} - x^{3} + 19x^{2} + 18x + 324 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν3+19ν219ν+324)/342 ( -\nu^{3} + 19\nu^{2} - 19\nu + 324 ) / 342 Copy content Toggle raw display
β3\beta_{3}== (ν3+37)/19 ( \nu^{3} + 37 ) / 19 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β3+18β2+β119 \beta_{3} + 18\beta_{2} + \beta _1 - 19 Copy content Toggle raw display
ν3\nu^{3}== 19β337 19\beta_{3} - 37 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/19Z)×\left(\mathbb{Z}/19\mathbb{Z}\right)^\times.

nn 22
χ(n)\chi(n) 1+β2-1 + \beta_{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
7.1
2.38600 + 4.13267i
−1.88600 3.26665i
2.38600 4.13267i
−1.88600 + 3.26665i
−2.38600 4.13267i −0.500000 0.866025i −7.38600 + 12.7929i −6.88600 11.9269i −2.38600 + 4.13267i 27.0880 32.3160 13.0000 22.5167i −32.8600 + 56.9152i
7.2 1.88600 + 3.26665i −0.500000 0.866025i −3.11400 + 5.39360i −2.61400 4.52758i 1.88600 3.26665i −7.08801 6.68399 13.0000 22.5167i 9.86001 17.0780i
11.1 −2.38600 + 4.13267i −0.500000 + 0.866025i −7.38600 12.7929i −6.88600 + 11.9269i −2.38600 4.13267i 27.0880 32.3160 13.0000 + 22.5167i −32.8600 56.9152i
11.2 1.88600 3.26665i −0.500000 + 0.866025i −3.11400 5.39360i −2.61400 + 4.52758i 1.88600 + 3.26665i −7.08801 6.68399 13.0000 + 22.5167i 9.86001 + 17.0780i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 19.4.c.b 4
3.b odd 2 1 171.4.f.d 4
4.b odd 2 1 304.4.i.d 4
19.c even 3 1 inner 19.4.c.b 4
19.c even 3 1 361.4.a.f 2
19.d odd 6 1 361.4.a.e 2
57.h odd 6 1 171.4.f.d 4
76.g odd 6 1 304.4.i.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
19.4.c.b 4 1.a even 1 1 trivial
19.4.c.b 4 19.c even 3 1 inner
171.4.f.d 4 3.b odd 2 1
171.4.f.d 4 57.h odd 6 1
304.4.i.d 4 4.b odd 2 1
304.4.i.d 4 76.g odd 6 1
361.4.a.e 2 19.d odd 6 1
361.4.a.f 2 19.c even 3 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T24+T23+19T2218T2+324 T_{2}^{4} + T_{2}^{3} + 19T_{2}^{2} - 18T_{2} + 324 acting on S4new(19,[χ])S_{4}^{\mathrm{new}}(19, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4+T3++324 T^{4} + T^{3} + \cdots + 324 Copy content Toggle raw display
33 (T2+T+1)2 (T^{2} + T + 1)^{2} Copy content Toggle raw display
55 T4+19T3++5184 T^{4} + 19 T^{3} + \cdots + 5184 Copy content Toggle raw display
77 (T220T192)2 (T^{2} - 20 T - 192)^{2} Copy content Toggle raw display
1111 (T2+33T+108)2 (T^{2} + 33 T + 108)^{2} Copy content Toggle raw display
1313 T4+101T3++4384836 T^{4} + 101 T^{3} + \cdots + 4384836 Copy content Toggle raw display
1717 T475T3++44116164 T^{4} - 75 T^{3} + \cdots + 44116164 Copy content Toggle raw display
1919 T457T3++47045881 T^{4} - 57 T^{3} + \cdots + 47045881 Copy content Toggle raw display
2323 T4+T3++27815076 T^{4} + T^{3} + \cdots + 27815076 Copy content Toggle raw display
2929 T485T3++833592384 T^{4} - 85 T^{3} + \cdots + 833592384 Copy content Toggle raw display
3131 (T222T536)2 (T^{2} - 22 T - 536)^{2} Copy content Toggle raw display
3737 (T2448T+26524)2 (T^{2} - 448 T + 26524)^{2} Copy content Toggle raw display
4141 T4+124T3++14220441 T^{4} + 124 T^{3} + \cdots + 14220441 Copy content Toggle raw display
4343 T4311T3++260241424 T^{4} - 311 T^{3} + \cdots + 260241424 Copy content Toggle raw display
4747 T4+411T3++209438784 T^{4} + 411 T^{3} + \cdots + 209438784 Copy content Toggle raw display
5353 T4++26191538244 T^{4} + \cdots + 26191538244 Copy content Toggle raw display
5959 T4++32209121961 T^{4} + \cdots + 32209121961 Copy content Toggle raw display
6161 T4++4843603216 T^{4} + \cdots + 4843603216 Copy content Toggle raw display
6767 T4++161337985561 T^{4} + \cdots + 161337985561 Copy content Toggle raw display
7171 T4++372805494084 T^{4} + \cdots + 372805494084 Copy content Toggle raw display
7373 T4++16291714321 T^{4} + \cdots + 16291714321 Copy content Toggle raw display
7979 T4331T3++97061904 T^{4} - 331 T^{3} + \cdots + 97061904 Copy content Toggle raw display
8383 (T21459T+59112)2 (T^{2} - 1459 T + 59112)^{2} Copy content Toggle raw display
8989 T4+601T3++556865604 T^{4} + 601 T^{3} + \cdots + 556865604 Copy content Toggle raw display
9797 T4++1806048395449 T^{4} + \cdots + 1806048395449 Copy content Toggle raw display
show more
show less