Properties

Label 2128.1.cw.b
Level 21282128
Weight 11
Character orbit 2128.cw
Analytic conductor 1.0621.062
Analytic rank 00
Dimension 22
Projective image D6D_{6}
CM discriminant -19
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2128,1,Mod(607,2128)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2128, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 5, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2128.607");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 2128=24719 2128 = 2^{4} \cdot 7 \cdot 19
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2128.cw (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.062010346881.06201034688
Analytic rank: 00
Dimension: 22
Coefficient field: Q(ζ6)\Q(\zeta_{6})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D6D_{6}
Projective field: Galois closure of 6.2.1553235712.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+(ζ61)q5+q7+ζ62q9+(ζ62+1)q17ζ62q19+(ζ61)q23+(ζ62+ζ6+1)q25+(ζ61)q35++(ζ621)q95+O(q100) q + ( - \zeta_{6} - 1) q^{5} + q^{7} + \zeta_{6}^{2} q^{9} + ( - \zeta_{6}^{2} + 1) q^{17} - \zeta_{6}^{2} q^{19} + ( - \zeta_{6} - 1) q^{23} + (\zeta_{6}^{2} + \zeta_{6} + 1) q^{25} + ( - \zeta_{6} - 1) q^{35} + \cdots + (\zeta_{6}^{2} - 1) q^{95} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q3q5+2q7q9+3q17+q193q23+2q253q35+3q45+2q47+2q49q63q812q836q853q95+O(q100) 2 q - 3 q^{5} + 2 q^{7} - q^{9} + 3 q^{17} + q^{19} - 3 q^{23} + 2 q^{25} - 3 q^{35} + 3 q^{45} + 2 q^{47} + 2 q^{49} - q^{63} - q^{81} - 2 q^{83} - 6 q^{85} - 3 q^{95}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2128Z)×\left(\mathbb{Z}/2128\mathbb{Z}\right)^\times.

nn 533533 799799 913913 10091009
χ(n)\chi(n) 11 1-1 ζ62-\zeta_{6}^{2} 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
607.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0 0 −1.50000 0.866025i 0 1.00000 0 −0.500000 + 0.866025i 0
1823.1 0 0 0 −1.50000 + 0.866025i 0 1.00000 0 −0.500000 0.866025i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 CM by Q(19)\Q(\sqrt{-19})
28.f even 6 1 inner
532.bh odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2128.1.cw.b yes 2
4.b odd 2 1 2128.1.cw.a 2
7.d odd 6 1 2128.1.cw.a 2
19.b odd 2 1 CM 2128.1.cw.b yes 2
28.f even 6 1 inner 2128.1.cw.b yes 2
76.d even 2 1 2128.1.cw.a 2
133.o even 6 1 2128.1.cw.a 2
532.bh odd 6 1 inner 2128.1.cw.b yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2128.1.cw.a 2 4.b odd 2 1
2128.1.cw.a 2 7.d odd 6 1
2128.1.cw.a 2 76.d even 2 1
2128.1.cw.a 2 133.o even 6 1
2128.1.cw.b yes 2 1.a even 1 1 trivial
2128.1.cw.b yes 2 19.b odd 2 1 CM
2128.1.cw.b yes 2 28.f even 6 1 inner
2128.1.cw.b yes 2 532.bh odd 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S1new(2128,[χ])S_{1}^{\mathrm{new}}(2128, [\chi]):

T52+3T5+3 T_{5}^{2} + 3T_{5} + 3 Copy content Toggle raw display
T11 T_{11} Copy content Toggle raw display
T232+3T23+3 T_{23}^{2} + 3T_{23} + 3 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2+3T+3 T^{2} + 3T + 3 Copy content Toggle raw display
77 (T1)2 (T - 1)^{2} Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2 T^{2} Copy content Toggle raw display
1717 T23T+3 T^{2} - 3T + 3 Copy content Toggle raw display
1919 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
2323 T2+3T+3 T^{2} + 3T + 3 Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 T2 T^{2} Copy content Toggle raw display
3737 T2 T^{2} Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 T2+3 T^{2} + 3 Copy content Toggle raw display
4747 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 T2 T^{2} Copy content Toggle raw display
6767 T2 T^{2} Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T2 T^{2} Copy content Toggle raw display
7979 T2 T^{2} Copy content Toggle raw display
8383 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
8989 T2 T^{2} Copy content Toggle raw display
9797 T2 T^{2} Copy content Toggle raw display
show more
show less