Properties

Label 219.1.j.a
Level 219219
Weight 11
Character orbit 219.j
Analytic conductor 0.1090.109
Analytic rank 00
Dimension 22
Projective image D3D_{3}
CM discriminant -3
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [219,1,Mod(8,219)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(219, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 2])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("219.8"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: N N == 219=373 219 = 3 \cdot 73
Weight: k k == 1 1
Character orbit: [χ][\chi] == 219.j (of order 66, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.1092952377670.109295237767
Analytic rank: 00
Dimension: 22
Coefficient field: Q(ζ6)\Q(\zeta_{6})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D3D_{3}
Projective field: Galois closure of 3.1.15987.1
Artin image: C3×S3C_3\times S_3
Artin field: Galois closure of 6.0.143883.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+q3+ζ62q4q7+q9+ζ62q122ζ6q13ζ6q16+ζ6q19q21ζ6q25+q27ζ62q28+ζ6q31+q97+O(q100) q + q^{3} + \zeta_{6}^{2} q^{4} - q^{7} + q^{9} + \zeta_{6}^{2} q^{12} - 2 \zeta_{6} q^{13} - \zeta_{6} q^{16} + \zeta_{6} q^{19} - q^{21} - \zeta_{6} q^{25} + q^{27} - \zeta_{6}^{2} q^{28} + \zeta_{6} q^{31} + \cdots - q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q3q42q7+2q9q122q13q16+q192q21q25+2q27+q28+q31q362q372q392q43q48+4q52+q57+2q97+O(q100) 2 q + 2 q^{3} - q^{4} - 2 q^{7} + 2 q^{9} - q^{12} - 2 q^{13} - q^{16} + q^{19} - 2 q^{21} - q^{25} + 2 q^{27} + q^{28} + q^{31} - q^{36} - 2 q^{37} - 2 q^{39} - 2 q^{43} - q^{48} + 4 q^{52} + q^{57}+ \cdots - 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/219Z)×\left(\mathbb{Z}/219\mathbb{Z}\right)^\times.

nn 7474 151151
χ(n)\chi(n) 1-1 ζ6-\zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
8.1
0.500000 0.866025i
0.500000 + 0.866025i
0 1.00000 −0.500000 0.866025i 0 0 −1.00000 0 1.00000 0
137.1 0 1.00000 −0.500000 + 0.866025i 0 0 −1.00000 0 1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by Q(3)\Q(\sqrt{-3})
73.c even 3 1 inner
219.j odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 219.1.j.a 2
3.b odd 2 1 CM 219.1.j.a 2
4.b odd 2 1 3504.1.cc.a 2
12.b even 2 1 3504.1.cc.a 2
73.c even 3 1 inner 219.1.j.a 2
219.j odd 6 1 inner 219.1.j.a 2
292.h odd 6 1 3504.1.cc.a 2
876.q even 6 1 3504.1.cc.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
219.1.j.a 2 1.a even 1 1 trivial
219.1.j.a 2 3.b odd 2 1 CM
219.1.j.a 2 73.c even 3 1 inner
219.1.j.a 2 219.j odd 6 1 inner
3504.1.cc.a 2 4.b odd 2 1
3504.1.cc.a 2 12.b even 2 1
3504.1.cc.a 2 292.h odd 6 1
3504.1.cc.a 2 876.q even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T2 T_{2} acting on S1new(219,[χ])S_{1}^{\mathrm{new}}(219, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 (T1)2 (T - 1)^{2} Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
3737 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
6767 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 (T1)2 (T - 1)^{2} Copy content Toggle raw display
7979 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 T2 T^{2} Copy content Toggle raw display
9797 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
show more
show less