gp: [N,k,chi] = [219,1,Mod(8,219)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(219, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 2]))
N = Newforms(chi, 1, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("219.8");
S:= CuspForms(chi, 1);
N := Newforms(S);
Newform invariants
sage: traces = [2]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The q q q -expansion and trace form are shown below.
Character values
We give the values of χ \chi χ on generators for ( Z / 219 Z ) × \left(\mathbb{Z}/219\mathbb{Z}\right)^\times ( Z / 2 1 9 Z ) × .
n n n
74 74 7 4
151 151 1 5 1
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
− ζ 6 -\zeta_{6} − ζ 6
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 2 T_{2} T 2
T2
acting on S 1 n e w ( 219 , [ χ ] ) S_{1}^{\mathrm{new}}(219, [\chi]) S 1 n e w ( 2 1 9 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 T^{2} T 2
T^2
3 3 3
( T − 1 ) 2 (T - 1)^{2} ( T − 1 ) 2
(T - 1)^2
5 5 5
T 2 T^{2} T 2
T^2
7 7 7
( T + 1 ) 2 (T + 1)^{2} ( T + 1 ) 2
(T + 1)^2
11 11 1 1
T 2 T^{2} T 2
T^2
13 13 1 3
T 2 + 2 T + 4 T^{2} + 2T + 4 T 2 + 2 T + 4
T^2 + 2*T + 4
17 17 1 7
T 2 T^{2} T 2
T^2
19 19 1 9
T 2 − T + 1 T^{2} - T + 1 T 2 − T + 1
T^2 - T + 1
23 23 2 3
T 2 T^{2} T 2
T^2
29 29 2 9
T 2 T^{2} T 2
T^2
31 31 3 1
T 2 − T + 1 T^{2} - T + 1 T 2 − T + 1
T^2 - T + 1
37 37 3 7
T 2 + 2 T + 4 T^{2} + 2T + 4 T 2 + 2 T + 4
T^2 + 2*T + 4
41 41 4 1
T 2 T^{2} T 2
T^2
43 43 4 3
( T + 1 ) 2 (T + 1)^{2} ( T + 1 ) 2
(T + 1)^2
47 47 4 7
T 2 T^{2} T 2
T^2
53 53 5 3
T 2 T^{2} T 2
T^2
59 59 5 9
T 2 T^{2} T 2
T^2
61 61 6 1
T 2 − T + 1 T^{2} - T + 1 T 2 − T + 1
T^2 - T + 1
67 67 6 7
T 2 − T + 1 T^{2} - T + 1 T 2 − T + 1
T^2 - T + 1
71 71 7 1
T 2 T^{2} T 2
T^2
73 73 7 3
( T − 1 ) 2 (T - 1)^{2} ( T − 1 ) 2
(T - 1)^2
79 79 7 9
T 2 − T + 1 T^{2} - T + 1 T 2 − T + 1
T^2 - T + 1
83 83 8 3
T 2 T^{2} T 2
T^2
89 89 8 9
T 2 T^{2} T 2
T^2
97 97 9 7
( T + 1 ) 2 (T + 1)^{2} ( T + 1 ) 2
(T + 1)^2
show more
show less