Properties

Label 3864.1.bx.f.275.1
Level $3864$
Weight $1$
Character 3864.275
Analytic conductor $1.928$
Analytic rank $0$
Dimension $4$
Projective image $D_{6}$
CM discriminant -552
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3864,1,Mod(275,3864)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3864, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 3, 2, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3864.275");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3864 = 2^{3} \cdot 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3864.bx (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.92838720881\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{6}\)
Projective field: Galois closure of 6.0.16826668992.2

Embedding invariants

Embedding label 275.1
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 3864.275
Dual form 3864.1.bx.f.3035.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(0.500000 + 0.866025i) q^{3} +(-0.500000 - 0.866025i) q^{4} +1.00000 q^{6} +(-0.866025 + 0.500000i) q^{7} -1.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(0.500000 - 0.866025i) q^{2} +(0.500000 + 0.866025i) q^{3} +(-0.500000 - 0.866025i) q^{4} +1.00000 q^{6} +(-0.866025 + 0.500000i) q^{7} -1.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +(-0.866025 - 1.50000i) q^{11} +(0.500000 - 0.866025i) q^{12} +1.00000i q^{14} +(-0.500000 + 0.866025i) q^{16} +(-0.866025 - 1.50000i) q^{17} +(0.500000 + 0.866025i) q^{18} +(-0.866025 - 0.500000i) q^{21} -1.73205 q^{22} +(-0.500000 + 0.866025i) q^{23} +(-0.500000 - 0.866025i) q^{24} +(-0.500000 - 0.866025i) q^{25} -1.00000 q^{27} +(0.866025 + 0.500000i) q^{28} -1.00000 q^{29} +(0.500000 + 0.866025i) q^{32} +(0.866025 - 1.50000i) q^{33} -1.73205 q^{34} +1.00000 q^{36} +(-0.866025 + 0.500000i) q^{42} +(-0.866025 + 1.50000i) q^{44} +(0.500000 + 0.866025i) q^{46} +(0.500000 - 0.866025i) q^{47} -1.00000 q^{48} +(0.500000 - 0.866025i) q^{49} -1.00000 q^{50} +(0.866025 - 1.50000i) q^{51} +(-0.500000 + 0.866025i) q^{54} +(0.866025 - 0.500000i) q^{56} +(-0.500000 + 0.866025i) q^{58} -1.00000i q^{63} +1.00000 q^{64} +(-0.866025 - 1.50000i) q^{66} +(-0.866025 + 1.50000i) q^{68} -1.00000 q^{69} +1.00000 q^{71} +(0.500000 - 0.866025i) q^{72} +(-0.500000 - 0.866025i) q^{73} +(0.500000 - 0.866025i) q^{75} +(1.50000 + 0.866025i) q^{77} +(-0.866025 + 1.50000i) q^{79} +(-0.500000 - 0.866025i) q^{81} +1.00000i q^{84} +(-0.500000 - 0.866025i) q^{87} +(0.866025 + 1.50000i) q^{88} +1.00000 q^{92} +(-0.500000 - 0.866025i) q^{94} +(-0.500000 + 0.866025i) q^{96} +(-0.500000 - 0.866025i) q^{98} +1.73205 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + 2 q^{3} - 2 q^{4} + 4 q^{6} - 4 q^{8} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{2} + 2 q^{3} - 2 q^{4} + 4 q^{6} - 4 q^{8} - 2 q^{9} + 2 q^{12} - 2 q^{16} + 2 q^{18} - 2 q^{23} - 2 q^{24} - 2 q^{25} - 4 q^{27} - 4 q^{29} + 2 q^{32} + 4 q^{36} + 2 q^{46} + 2 q^{47} - 4 q^{48} + 2 q^{49} - 4 q^{50} - 2 q^{54} - 2 q^{58} + 4 q^{64} - 4 q^{69} + 4 q^{71} + 2 q^{72} - 2 q^{73} + 2 q^{75} + 6 q^{77} - 2 q^{81} - 2 q^{87} + 4 q^{92} - 2 q^{94} - 2 q^{96} - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3864\mathbb{Z}\right)^\times\).

\(n\) \(967\) \(1289\) \(1933\) \(2761\) \(2857\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.500000 0.866025i
\(3\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(4\) −0.500000 0.866025i −0.500000 0.866025i
\(5\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(6\) 1.00000 1.00000
\(7\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(8\) −1.00000 −1.00000
\(9\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(10\) 0 0
\(11\) −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(-0.5\pi\)
\(12\) 0.500000 0.866025i 0.500000 0.866025i
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 1.00000i 1.00000i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(17\) −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(-0.5\pi\)
\(18\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(19\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(20\) 0 0
\(21\) −0.866025 0.500000i −0.866025 0.500000i
\(22\) −1.73205 −1.73205
\(23\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(24\) −0.500000 0.866025i −0.500000 0.866025i
\(25\) −0.500000 0.866025i −0.500000 0.866025i
\(26\) 0 0
\(27\) −1.00000 −1.00000
\(28\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(29\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(30\) 0 0
\(31\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(32\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(33\) 0.866025 1.50000i 0.866025 1.50000i
\(34\) −1.73205 −1.73205
\(35\) 0 0
\(36\) 1.00000 1.00000
\(37\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) −0.866025 + 1.50000i −0.866025 + 1.50000i
\(45\) 0 0
\(46\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(47\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(48\) −1.00000 −1.00000
\(49\) 0.500000 0.866025i 0.500000 0.866025i
\(50\) −1.00000 −1.00000
\(51\) 0.866025 1.50000i 0.866025 1.50000i
\(52\) 0 0
\(53\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(54\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(55\) 0 0
\(56\) 0.866025 0.500000i 0.866025 0.500000i
\(57\) 0 0
\(58\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(59\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(60\) 0 0
\(61\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(62\) 0 0
\(63\) 1.00000i 1.00000i
\(64\) 1.00000 1.00000
\(65\) 0 0
\(66\) −0.866025 1.50000i −0.866025 1.50000i
\(67\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(68\) −0.866025 + 1.50000i −0.866025 + 1.50000i
\(69\) −1.00000 −1.00000
\(70\) 0 0
\(71\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(72\) 0.500000 0.866025i 0.500000 0.866025i
\(73\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 0.500000 0.866025i 0.500000 0.866025i
\(76\) 0 0
\(77\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(78\) 0 0
\(79\) −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i \(0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.500000 0.866025i
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 1.00000i 1.00000i
\(85\) 0 0
\(86\) 0 0
\(87\) −0.500000 0.866025i −0.500000 0.866025i
\(88\) 0.866025 + 1.50000i 0.866025 + 1.50000i
\(89\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 1.00000 1.00000
\(93\) 0 0
\(94\) −0.500000 0.866025i −0.500000 0.866025i
\(95\) 0 0
\(96\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) −0.500000 0.866025i −0.500000 0.866025i
\(99\) 1.73205 1.73205
\(100\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(101\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(102\) −0.866025 1.50000i −0.866025 1.50000i
\(103\) −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i \(0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(108\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(109\) −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(-0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.00000i 1.00000i
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(117\) 0 0
\(118\) 0 0
\(119\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(120\) 0 0
\(121\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) −0.866025 0.500000i −0.866025 0.500000i
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0.500000 0.866025i 0.500000 0.866025i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(132\) −1.73205 −1.73205
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0.866025 + 1.50000i 0.866025 + 1.50000i
\(137\) 0.866025 + 1.50000i 0.866025 + 1.50000i 0.866025 + 0.500000i \(0.166667\pi\)
1.00000i \(0.5\pi\)
\(138\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(139\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(140\) 0 0
\(141\) 1.00000 1.00000
\(142\) 0.500000 0.866025i 0.500000 0.866025i
\(143\) 0 0
\(144\) −0.500000 0.866025i −0.500000 0.866025i
\(145\) 0 0
\(146\) −1.00000 −1.00000
\(147\) 1.00000 1.00000
\(148\) 0 0
\(149\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(150\) −0.500000 0.866025i −0.500000 0.866025i
\(151\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(152\) 0 0
\(153\) 1.73205 1.73205
\(154\) 1.50000 0.866025i 1.50000 0.866025i
\(155\) 0 0
\(156\) 0 0
\(157\) −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(-0.5\pi\)
\(158\) 0.866025 + 1.50000i 0.866025 + 1.50000i
\(159\) 0 0
\(160\) 0 0
\(161\) 1.00000i 1.00000i
\(162\) −1.00000 −1.00000
\(163\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(168\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(169\) 1.00000 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(174\) −1.00000 −1.00000
\(175\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(176\) 1.73205 1.73205
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(180\) 0 0
\(181\) 1.73205 1.73205 0.866025 0.500000i \(-0.166667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0.500000 0.866025i 0.500000 0.866025i
\(185\) 0 0
\(186\) 0 0
\(187\) −1.50000 + 2.59808i −1.50000 + 2.59808i
\(188\) −1.00000 −1.00000
\(189\) 0.866025 0.500000i 0.866025 0.500000i
\(190\) 0 0
\(191\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(192\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(193\) 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −1.00000 −1.00000
\(197\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(198\) 0.866025 1.50000i 0.866025 1.50000i
\(199\) 0.866025 + 1.50000i 0.866025 + 1.50000i 0.866025 + 0.500000i \(0.166667\pi\)
1.00000i \(0.5\pi\)
\(200\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(201\) 0 0
\(202\) −1.00000 −1.00000
\(203\) 0.866025 0.500000i 0.866025 0.500000i
\(204\) −1.73205 −1.73205
\(205\) 0 0
\(206\) 0.866025 + 1.50000i 0.866025 + 1.50000i
\(207\) −0.500000 0.866025i −0.500000 0.866025i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(212\) 0 0
\(213\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(214\) 0 0
\(215\) 0 0
\(216\) 1.00000 1.00000
\(217\) 0 0
\(218\) −1.73205 −1.73205
\(219\) 0.500000 0.866025i 0.500000 0.866025i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) −0.866025 0.500000i −0.866025 0.500000i
\(225\) 1.00000 1.00000
\(226\) 0 0
\(227\) 0.866025 + 1.50000i 0.866025 + 1.50000i 0.866025 + 0.500000i \(0.166667\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 0.866025 1.50000i 0.866025 1.50000i 1.00000i \(-0.5\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(230\) 0 0
\(231\) 1.73205i 1.73205i
\(232\) 1.00000 1.00000
\(233\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −1.73205 −1.73205
\(238\) 1.50000 0.866025i 1.50000 0.866025i
\(239\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(240\) 0 0
\(241\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(242\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(243\) 0.500000 0.866025i 0.500000 0.866025i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −1.73205 −1.73205 −0.866025 0.500000i \(-0.833333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(252\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(253\) 1.73205 1.73205
\(254\) 0 0
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.500000 0.866025i
\(257\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0.500000 0.866025i 0.500000 0.866025i
\(262\) 0 0
\(263\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(264\) −0.866025 + 1.50000i −0.866025 + 1.50000i
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(272\) 1.73205 1.73205
\(273\) 0 0
\(274\) 1.73205 1.73205
\(275\) −0.866025 + 1.50000i −0.866025 + 1.50000i
\(276\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(277\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(278\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(279\) 0 0
\(280\) 0 0
\(281\) −1.73205 −1.73205 −0.866025 0.500000i \(-0.833333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(282\) 0.500000 0.866025i 0.500000 0.866025i
\(283\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(284\) −0.500000 0.866025i −0.500000 0.866025i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −1.00000 −1.00000
\(289\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(290\) 0 0
\(291\) 0 0
\(292\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0.500000 0.866025i 0.500000 0.866025i
\(295\) 0 0
\(296\) 0 0
\(297\) 0.866025 + 1.50000i 0.866025 + 1.50000i
\(298\) 0 0
\(299\) 0 0
\(300\) −1.00000 −1.00000
\(301\) 0 0
\(302\) 0 0
\(303\) 0.500000 0.866025i 0.500000 0.866025i
\(304\) 0 0
\(305\) 0 0
\(306\) 0.866025 1.50000i 0.866025 1.50000i
\(307\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(308\) 1.73205i 1.73205i
\(309\) −1.73205 −1.73205
\(310\) 0 0
\(311\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(314\) −1.73205 −1.73205
\(315\) 0 0
\(316\) 1.73205 1.73205
\(317\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(318\) 0 0
\(319\) 0.866025 + 1.50000i 0.866025 + 1.50000i
\(320\) 0 0
\(321\) 0 0
\(322\) −0.866025 0.500000i −0.866025 0.500000i
\(323\) 0 0
\(324\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(325\) 0 0
\(326\) −0.500000 0.866025i −0.500000 0.866025i
\(327\) 0.866025 1.50000i 0.866025 1.50000i
\(328\) 0 0
\(329\) 1.00000i 1.00000i
\(330\) 0 0
\(331\) 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i \(-0.333333\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(335\) 0 0
\(336\) 0.866025 0.500000i 0.866025 0.500000i
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0.500000 0.866025i 0.500000 0.866025i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 1.00000i 1.00000i
\(344\) 0 0
\(345\) 0 0
\(346\) −0.500000 0.866025i −0.500000 0.866025i
\(347\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(348\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0.866025 0.500000i 0.866025 0.500000i
\(351\) 0 0
\(352\) 0.866025 1.50000i 0.866025 1.50000i
\(353\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 1.73205i 1.73205i
\(358\) 0 0
\(359\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(360\) 0 0
\(361\) −0.500000 0.866025i −0.500000 0.866025i
\(362\) 0.866025 1.50000i 0.866025 1.50000i
\(363\) −2.00000 −2.00000
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(368\) −0.500000 0.866025i −0.500000 0.866025i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0.866025 1.50000i 0.866025 1.50000i 1.00000i \(-0.5\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(374\) 1.50000 + 2.59808i 1.50000 + 2.59808i
\(375\) 0 0
\(376\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(377\) 0 0
\(378\) 1.00000i 1.00000i
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(384\) 1.00000 1.00000
\(385\) 0 0
\(386\) 2.00000 2.00000
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(390\) 0 0
\(391\) 1.73205 1.73205
\(392\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(393\) 0 0
\(394\) 0.500000 0.866025i 0.500000 0.866025i
\(395\) 0 0
\(396\) −0.866025 1.50000i −0.866025 1.50000i
\(397\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(398\) 1.73205 1.73205
\(399\) 0 0
\(400\) 1.00000 1.00000
\(401\) 0.866025 1.50000i 0.866025 1.50000i 1.00000i \(-0.5\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(405\) 0 0
\(406\) 1.00000i 1.00000i
\(407\) 0 0
\(408\) −0.866025 + 1.50000i −0.866025 + 1.50000i
\(409\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) −0.866025 + 1.50000i −0.866025 + 1.50000i
\(412\) 1.73205 1.73205
\(413\) 0 0
\(414\) −1.00000 −1.00000
\(415\) 0 0
\(416\) 0 0
\(417\) −0.500000 0.866025i −0.500000 0.866025i
\(418\) 0 0
\(419\) 1.73205 1.73205 0.866025 0.500000i \(-0.166667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(420\) 0 0
\(421\) −1.73205 −1.73205 −0.866025 0.500000i \(-0.833333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(422\) 0.500000 0.866025i 0.500000 0.866025i
\(423\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(424\) 0 0
\(425\) −0.866025 + 1.50000i −0.866025 + 1.50000i
\(426\) 1.00000 1.00000
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(432\) 0.500000 0.866025i 0.500000 0.866025i
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −0.866025 + 1.50000i −0.866025 + 1.50000i
\(437\) 0 0
\(438\) −0.500000 0.866025i −0.500000 0.866025i
\(439\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(440\) 0 0
\(441\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(442\) 0 0
\(443\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0.500000 0.866025i 0.500000 0.866025i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 1.73205 1.73205
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(458\) −0.866025 1.50000i −0.866025 1.50000i
\(459\) 0.866025 + 1.50000i 0.866025 + 1.50000i
\(460\) 0 0
\(461\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(462\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0.500000 0.866025i 0.500000 0.866025i
\(465\) 0 0
\(466\) 0 0
\(467\) 0.866025 1.50000i 0.866025 1.50000i 1.00000i \(-0.5\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0.866025 1.50000i 0.866025 1.50000i
\(472\) 0 0
\(473\) 0 0
\(474\) −0.866025 + 1.50000i −0.866025 + 1.50000i
\(475\) 0 0
\(476\) 1.73205i 1.73205i
\(477\) 0 0
\(478\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(479\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0.866025 0.500000i 0.866025 0.500000i
\(484\) 2.00000 2.00000
\(485\) 0 0
\(486\) −0.500000 0.866025i −0.500000 0.866025i
\(487\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(488\) 0 0
\(489\) 1.00000 1.00000
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0.866025 + 1.50000i 0.866025 + 1.50000i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(498\) 0 0
\(499\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(500\) 0 0
\(501\) −1.00000 1.73205i −1.00000 1.73205i
\(502\) −0.866025 + 1.50000i −0.866025 + 1.50000i
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 1.00000i 1.00000i
\(505\) 0 0
\(506\) 0.866025 1.50000i 0.866025 1.50000i
\(507\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(508\) 0 0
\(509\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(510\) 0 0
\(511\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(512\) −1.00000 −1.00000
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −1.73205 −1.73205
\(518\) 0 0
\(519\) 1.00000 1.00000
\(520\) 0 0
\(521\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(522\) −0.500000 0.866025i −0.500000 0.866025i
\(523\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(524\) 0 0
\(525\) 1.00000i 1.00000i
\(526\) 0 0
\(527\) 0 0
\(528\) 0.866025 + 1.50000i 0.866025 + 1.50000i
\(529\) −0.500000 0.866025i −0.500000 0.866025i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) −1.00000 −1.00000
\(539\) −1.73205 −1.73205
\(540\) 0 0
\(541\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(542\) 0 0
\(543\) 0.866025 + 1.50000i 0.866025 + 1.50000i
\(544\) 0.866025 1.50000i 0.866025 1.50000i
\(545\) 0 0
\(546\) 0 0
\(547\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(548\) 0.866025 1.50000i 0.866025 1.50000i
\(549\) 0 0
\(550\) 0.866025 + 1.50000i 0.866025 + 1.50000i
\(551\) 0 0
\(552\) 1.00000 1.00000
\(553\) 1.73205i 1.73205i
\(554\) 0 0
\(555\) 0 0
\(556\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(557\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −3.00000 −3.00000
\(562\) −0.866025 + 1.50000i −0.866025 + 1.50000i
\(563\) −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(-0.5\pi\)
\(564\) −0.500000 0.866025i −0.500000 0.866025i
\(565\) 0 0
\(566\) 0 0
\(567\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(568\) −1.00000 −1.00000
\(569\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(570\) 0 0
\(571\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1.00000 1.00000
\(576\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(577\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(578\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(579\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) −0.500000 0.866025i −0.500000 0.866025i
\(589\) 0 0
\(590\) 0 0
\(591\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(592\) 0 0
\(593\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(594\) 1.73205 1.73205
\(595\) 0 0
\(596\) 0 0
\(597\) −0.866025 + 1.50000i −0.866025 + 1.50000i
\(598\) 0 0
\(599\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(600\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(601\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) −0.500000 0.866025i −0.500000 0.866025i
\(607\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(608\) 0 0
\(609\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(610\) 0 0
\(611\) 0 0
\(612\) −0.866025 1.50000i −0.866025 1.50000i
\(613\) 0.866025 + 1.50000i 0.866025 + 1.50000i 0.866025 + 0.500000i \(0.166667\pi\)
1.00000i \(0.5\pi\)
\(614\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(615\) 0 0
\(616\) −1.50000 0.866025i −1.50000 0.866025i
\(617\) 1.73205 1.73205 0.866025 0.500000i \(-0.166667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(618\) −0.866025 + 1.50000i −0.866025 + 1.50000i
\(619\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(620\) 0 0
\(621\) 0.500000 0.866025i 0.500000 0.866025i
\(622\) −1.00000 −1.00000
\(623\) 0 0
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(626\) 0 0
\(627\) 0 0
\(628\) −0.866025 + 1.50000i −0.866025 + 1.50000i
\(629\) 0 0
\(630\) 0 0
\(631\) 1.73205 1.73205 0.866025 0.500000i \(-0.166667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(632\) 0.866025 1.50000i 0.866025 1.50000i
\(633\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(634\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 1.73205 1.73205
\(639\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(640\) 0 0
\(641\) −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(-0.5\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(645\) 0 0
\(646\) 0 0
\(647\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(648\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −1.00000 −1.00000
\(653\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(654\) −0.866025 1.50000i −0.866025 1.50000i
\(655\) 0 0
\(656\) 0 0
\(657\) 1.00000 1.00000
\(658\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(659\) −1.73205 −1.73205 −0.866025 0.500000i \(-0.833333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(660\) 0 0
\(661\) −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(-0.5\pi\)
\(662\) −1.00000 1.73205i −1.00000 1.73205i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0.500000 0.866025i 0.500000 0.866025i
\(668\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 1.00000i 1.00000i
\(673\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(674\) 0 0
\(675\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(676\) −0.500000 0.866025i −0.500000 0.866025i
\(677\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −0.866025 + 1.50000i −0.866025 + 1.50000i
\(682\) 0 0
\(683\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(687\) 1.73205 1.73205
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(692\) −1.00000 −1.00000
\(693\) −1.50000 + 0.866025i −1.50000 + 0.866025i
\(694\) 0 0
\(695\) 0 0
\(696\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 1.00000i 1.00000i
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −0.866025 1.50000i −0.866025 1.50000i
\(705\) 0 0
\(706\) 0 0
\(707\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(708\) 0 0
\(709\) 0.866025 1.50000i 0.866025 1.50000i 1.00000i \(-0.5\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(710\) 0 0
\(711\) −0.866025 1.50000i −0.866025 1.50000i
\(712\) 0 0
\(713\) 0 0
\(714\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(715\) 0 0
\(716\) 0 0
\(717\) −0.500000 0.866025i −0.500000 0.866025i
\(718\) 0 0
\(719\) 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i \(-0.333333\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(720\) 0 0
\(721\) 1.73205i 1.73205i
\(722\) −1.00000 −1.00000
\(723\) 0 0
\(724\) −0.866025 1.50000i −0.866025 1.50000i
\(725\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(726\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(727\) −1.73205 −1.73205 −0.866025 0.500000i \(-0.833333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(728\) 0 0
\(729\) 1.00000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i \(0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) −1.00000 −1.00000
\(737\) 0 0
\(738\) 0 0
\(739\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −0.866025 1.50000i −0.866025 1.50000i
\(747\) 0 0
\(748\) 3.00000 3.00000
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(752\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(753\) −0.866025 1.50000i −0.866025 1.50000i
\(754\) 0 0
\(755\) 0 0
\(756\) −0.866025 0.500000i −0.866025 0.500000i
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) 0 0
\(759\) 0.866025 + 1.50000i 0.866025 + 1.50000i
\(760\) 0 0
\(761\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(762\) 0 0
\(763\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0.500000 0.866025i 0.500000 0.866025i
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 1.00000 1.73205i 1.00000 1.73205i
\(773\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −0.866025 1.50000i −0.866025 1.50000i
\(782\) 0.866025 1.50000i 0.866025 1.50000i
\(783\) 1.00000 1.00000
\(784\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(788\) −0.500000 0.866025i −0.500000 0.866025i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −1.73205 −1.73205
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0.866025 1.50000i 0.866025 1.50000i
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) −1.73205 −1.73205
\(800\) 0.500000 0.866025i 0.500000 0.866025i
\(801\) 0 0
\(802\) −0.866025 1.50000i −0.866025 1.50000i
\(803\) −0.866025 + 1.50000i −0.866025 + 1.50000i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0.500000 0.866025i 0.500000 0.866025i
\(808\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(809\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(810\) 0 0
\(811\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(812\) −0.866025 0.500000i −0.866025 0.500000i
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0.866025 + 1.50000i 0.866025 + 1.50000i
\(817\) 0 0
\(818\) −1.00000 −1.00000
\(819\) 0 0
\(820\) 0 0
\(821\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(822\) 0.866025 + 1.50000i 0.866025 + 1.50000i
\(823\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(824\) 0.866025 1.50000i 0.866025 1.50000i
\(825\) −1.73205 −1.73205
\(826\) 0 0
\(827\) −1.73205 −1.73205 −0.866025 0.500000i \(-0.833333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(828\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(829\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1.73205 −1.73205
\(834\) −1.00000 −1.00000
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0.866025 1.50000i 0.866025 1.50000i
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) −0.866025 + 1.50000i −0.866025 + 1.50000i
\(843\) −0.866025 1.50000i −0.866025 1.50000i
\(844\) −0.500000 0.866025i −0.500000 0.866025i
\(845\) 0 0
\(846\) 1.00000 1.00000
\(847\) 2.00000i 2.00000i
\(848\) 0 0
\(849\) 0 0
\(850\) 0.866025 + 1.50000i 0.866025 + 1.50000i
\(851\) 0 0
\(852\) 0.500000 0.866025i 0.500000 0.866025i
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(858\) 0 0
\(859\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(864\) −0.500000 0.866025i −0.500000 0.866025i
\(865\) 0 0
\(866\) 0 0
\(867\) −2.00000 −2.00000
\(868\) 0 0
\(869\) 3.00000 3.00000
\(870\) 0 0
\(871\) 0 0
\(872\) 0.866025 + 1.50000i 0.866025 + 1.50000i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) −1.00000 −1.00000
\(877\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −1.73205 −1.73205 −0.866025 0.500000i \(-0.833333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(882\) 1.00000 1.00000
\(883\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −0.866025 + 1.50000i −0.866025 + 1.50000i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 1.00000i 1.00000i
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −0.500000 0.866025i −0.500000 0.866025i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(908\) 0.866025 1.50000i 0.866025 1.50000i
\(909\) 1.00000 1.00000
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) −1.73205 −1.73205
\(917\) 0 0
\(918\) 1.73205 1.73205
\(919\) 0.866025 1.50000i 0.866025 1.50000i 1.00000i \(-0.5\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(920\) 0 0
\(921\) −0.500000 0.866025i −0.500000 0.866025i
\(922\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(923\) 0 0
\(924\) 1.50000 0.866025i 1.50000 0.866025i
\(925\) 0 0
\(926\) 0 0
\(927\) −0.866025 1.50000i −0.866025 1.50000i
\(928\) −0.500000 0.866025i −0.500000 0.866025i
\(929\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0.500000 0.866025i 0.500000 0.866025i
\(934\) −0.866025 1.50000i −0.866025 1.50000i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(942\) −0.866025 1.50000i −0.866025 1.50000i
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(948\) 0.866025 + 1.50000i 0.866025 + 1.50000i
\(949\) 0 0
\(950\) 0 0
\(951\) −2.00000 −2.00000
\(952\) −1.50000 0.866025i −1.50000 0.866025i
\(953\) 1.73205 1.73205 0.866025 0.500000i \(-0.166667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(957\) −0.866025 + 1.50000i −0.866025 + 1.50000i
\(958\) 0 0
\(959\) −1.50000 0.866025i −1.50000 0.866025i
\(960\) 0 0
\(961\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 1.00000i 1.00000i
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 1.00000 1.73205i 1.00000 1.73205i
\(969\) 0 0
\(970\) 0 0
\(971\) 0.866025 1.50000i 0.866025 1.50000i 1.00000i \(-0.5\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(972\) −1.00000 −1.00000
\(973\) 0.866025 0.500000i 0.866025 0.500000i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(978\) 0.500000 0.866025i 0.500000 0.866025i
\(979\) 0 0
\(980\) 0 0
\(981\) 1.73205 1.73205
\(982\) 0 0
\(983\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 1.73205 1.73205
\(987\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(992\) 0 0
\(993\) 2.00000 2.00000
\(994\) 1.00000i 1.00000i
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(998\) −0.500000 0.866025i −0.500000 0.866025i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3864.1.bx.f.275.1 yes 4
3.2 odd 2 3864.1.bx.e.275.1 4
7.4 even 3 inner 3864.1.bx.f.3035.1 yes 4
8.3 odd 2 3864.1.bx.e.275.2 yes 4
21.11 odd 6 3864.1.bx.e.3035.1 yes 4
23.22 odd 2 inner 3864.1.bx.f.275.2 yes 4
24.11 even 2 inner 3864.1.bx.f.275.2 yes 4
56.11 odd 6 3864.1.bx.e.3035.2 yes 4
69.68 even 2 3864.1.bx.e.275.2 yes 4
161.137 odd 6 inner 3864.1.bx.f.3035.2 yes 4
168.11 even 6 inner 3864.1.bx.f.3035.2 yes 4
184.91 even 2 3864.1.bx.e.275.1 4
483.137 even 6 3864.1.bx.e.3035.2 yes 4
552.275 odd 2 CM 3864.1.bx.f.275.1 yes 4
1288.459 even 6 3864.1.bx.e.3035.1 yes 4
3864.3035 odd 6 inner 3864.1.bx.f.3035.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3864.1.bx.e.275.1 4 3.2 odd 2
3864.1.bx.e.275.1 4 184.91 even 2
3864.1.bx.e.275.2 yes 4 8.3 odd 2
3864.1.bx.e.275.2 yes 4 69.68 even 2
3864.1.bx.e.3035.1 yes 4 21.11 odd 6
3864.1.bx.e.3035.1 yes 4 1288.459 even 6
3864.1.bx.e.3035.2 yes 4 56.11 odd 6
3864.1.bx.e.3035.2 yes 4 483.137 even 6
3864.1.bx.f.275.1 yes 4 1.1 even 1 trivial
3864.1.bx.f.275.1 yes 4 552.275 odd 2 CM
3864.1.bx.f.275.2 yes 4 23.22 odd 2 inner
3864.1.bx.f.275.2 yes 4 24.11 even 2 inner
3864.1.bx.f.3035.1 yes 4 7.4 even 3 inner
3864.1.bx.f.3035.1 yes 4 3864.3035 odd 6 inner
3864.1.bx.f.3035.2 yes 4 161.137 odd 6 inner
3864.1.bx.f.3035.2 yes 4 168.11 even 6 inner