Properties

Label 4004.2.a.h
Level 40044004
Weight 22
Character orbit 4004.a
Self dual yes
Analytic conductor 31.97231.972
Analytic rank 00
Dimension 99
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4004,2,Mod(1,4004)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4004, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4004.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 4004=2271113 4004 = 2^{2} \cdot 7 \cdot 11 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4004.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 31.972100969331.9721009693
Analytic rank: 00
Dimension: 99
Coefficient field: Q[x]/(x9)\mathbb{Q}[x]/(x^{9} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x93x819x7+51x6+116x5247x4249x3+288x2+189x14 x^{9} - 3x^{8} - 19x^{7} + 51x^{6} + 116x^{5} - 247x^{4} - 249x^{3} + 288x^{2} + 189x - 14 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β81,\beta_1,\ldots,\beta_{8} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q3β4q5+q7+(β4+β3β2++2)q9+q11q13+(β7β6β4+2)q15+(β8β3β2)q17++(β4+β3β2++2)q99+O(q100) q + \beta_1 q^{3} - \beta_{4} q^{5} + q^{7} + ( - \beta_{4} + \beta_{3} - \beta_{2} + \cdots + 2) q^{9} + q^{11} - q^{13} + (\beta_{7} - \beta_{6} - \beta_{4} + \cdots - 2) q^{15} + (\beta_{8} - \beta_{3} - \beta_{2}) q^{17}+ \cdots + ( - \beta_{4} + \beta_{3} - \beta_{2} + \cdots + 2) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 9q+3q3+9q7+20q9+9q119q139q15+5q17+10q19+3q21+8q23+3q25+27q27+14q29+11q31+3q333q39+14q41+8q43++20q99+O(q100) 9 q + 3 q^{3} + 9 q^{7} + 20 q^{9} + 9 q^{11} - 9 q^{13} - 9 q^{15} + 5 q^{17} + 10 q^{19} + 3 q^{21} + 8 q^{23} + 3 q^{25} + 27 q^{27} + 14 q^{29} + 11 q^{31} + 3 q^{33} - 3 q^{39} + 14 q^{41} + 8 q^{43}+ \cdots + 20 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x93x819x7+51x6+116x5247x4249x3+288x2+189x14 x^{9} - 3x^{8} - 19x^{7} + 51x^{6} + 116x^{5} - 247x^{4} - 249x^{3} + 288x^{2} + 189x - 14 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (11ν81526ν7+1071ν6+27349ν511387ν4132924ν3++36543)/15311 ( - 11 \nu^{8} - 1526 \nu^{7} + 1071 \nu^{6} + 27349 \nu^{5} - 11387 \nu^{4} - 132924 \nu^{3} + \cdots + 36543 ) / 15311 Copy content Toggle raw display
β3\beta_{3}== (38ν8296ν7916ν6+7131ν5+7323ν446071ν319277ν2+10711)/15311 ( 38 \nu^{8} - 296 \nu^{7} - 916 \nu^{6} + 7131 \nu^{5} + 7323 \nu^{4} - 46071 \nu^{3} - 19277 \nu^{2} + \cdots - 10711 ) / 15311 Copy content Toggle raw display
β4\beta_{4}== (49ν8+1230ν71987ν620218ν5+18710ν4+86853ν3++29301)/15311 ( 49 \nu^{8} + 1230 \nu^{7} - 1987 \nu^{6} - 20218 \nu^{5} + 18710 \nu^{4} + 86853 \nu^{3} + \cdots + 29301 ) / 15311 Copy content Toggle raw display
β5\beta_{5}== (95ν8740ν72290ν6+10172ν5+25963ν430967ν3++103366)/15311 ( 95 \nu^{8} - 740 \nu^{7} - 2290 \nu^{6} + 10172 \nu^{5} + 25963 \nu^{4} - 30967 \nu^{3} + \cdots + 103366 ) / 15311 Copy content Toggle raw display
β6\beta_{6}== (626ν8847ν79449ν6+9491ν5+32800ν414361ν3+41874)/15311 ( 626 \nu^{8} - 847 \nu^{7} - 9449 \nu^{6} + 9491 \nu^{5} + 32800 \nu^{4} - 14361 \nu^{3} + \cdots - 41874 ) / 15311 Copy content Toggle raw display
β7\beta_{7}== (702ν8+1439ν7+11281ν623753ν547446ν4+121814ν3++17363)/15311 ( - 702 \nu^{8} + 1439 \nu^{7} + 11281 \nu^{6} - 23753 \nu^{5} - 47446 \nu^{4} + 121814 \nu^{3} + \cdots + 17363 ) / 15311 Copy content Toggle raw display
β8\beta_{8}== (979ν8+1985ν7+18764ν631010ν5110094ν4+127655ν3+70160)/15311 ( - 979 \nu^{8} + 1985 \nu^{7} + 18764 \nu^{6} - 31010 \nu^{5} - 110094 \nu^{4} + 127655 \nu^{3} + \cdots - 70160 ) / 15311 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β4+β3β2+β1+5 -\beta_{4} + \beta_{3} - \beta_{2} + \beta _1 + 5 Copy content Toggle raw display
ν3\nu^{3}== β7+β6+2β3+8β1+3 \beta_{7} + \beta_{6} + 2\beta_{3} + 8\beta _1 + 3 Copy content Toggle raw display
ν4\nu^{4}== β8+β6+2β59β4+13β310β2+11β1+44 \beta_{8} + \beta_{6} + 2\beta_{5} - 9\beta_{4} + 13\beta_{3} - 10\beta_{2} + 11\beta _1 + 44 Copy content Toggle raw display
ν5\nu^{5}== β8+11β7+12β6+31β3β2+74β1+49 \beta_{8} + 11\beta_{7} + 12\beta_{6} + 31\beta_{3} - \beta_{2} + 74\beta _1 + 49 Copy content Toggle raw display
ν6\nu^{6}== 19β8+21β6+29β581β4+148β395β2+124β1+434 19\beta_{8} + 21\beta_{6} + 29\beta_{5} - 81\beta_{4} + 148\beta_{3} - 95\beta_{2} + 124\beta _1 + 434 Copy content Toggle raw display
ν7\nu^{7}== 22β8+110β7+133β6+3β52β4+394β331β2+734β1+673 22\beta_{8} + 110\beta_{7} + 133\beta_{6} + 3\beta_{5} - 2\beta_{4} + 394\beta_{3} - 31\beta_{2} + 734\beta _1 + 673 Copy content Toggle raw display
ν8\nu^{8}== 249β8+5β7+310β6+337β5741β4+1649β3++4485 249 \beta_{8} + 5 \beta_{7} + 310 \beta_{6} + 337 \beta_{5} - 741 \beta_{4} + 1649 \beta_{3} + \cdots + 4485 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−2.98175
−2.56319
−1.21819
−0.648104
0.0675528
1.32285
2.29815
3.32951
3.39317
0 −2.98175 0 2.28847 0 1.00000 0 5.89080 0
1.2 0 −2.56319 0 −1.31026 0 1.00000 0 3.56996 0
1.3 0 −1.21819 0 3.23173 0 1.00000 0 −1.51602 0
1.4 0 −0.648104 0 −1.99671 0 1.00000 0 −2.57996 0
1.5 0 0.0675528 0 −1.58844 0 1.00000 0 −2.99544 0
1.6 0 1.32285 0 −0.265081 0 1.00000 0 −1.25008 0
1.7 0 2.29815 0 0.952431 0 1.00000 0 2.28151 0
1.8 0 3.32951 0 2.67963 0 1.00000 0 8.08561 0
1.9 0 3.39317 0 −3.99177 0 1.00000 0 8.51361 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.9
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
77 1 -1
1111 1 -1
1313 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4004.2.a.h 9
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4004.2.a.h 9 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T393T3819T37+51T36+116T35247T34249T33+288T32+189T314 T_{3}^{9} - 3T_{3}^{8} - 19T_{3}^{7} + 51T_{3}^{6} + 116T_{3}^{5} - 247T_{3}^{4} - 249T_{3}^{3} + 288T_{3}^{2} + 189T_{3} - 14 acting on S2new(Γ0(4004))S_{2}^{\mathrm{new}}(\Gamma_0(4004)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T9 T^{9} Copy content Toggle raw display
33 T93T8+14 T^{9} - 3 T^{8} + \cdots - 14 Copy content Toggle raw display
55 T924T7++83 T^{9} - 24 T^{7} + \cdots + 83 Copy content Toggle raw display
77 (T1)9 (T - 1)^{9} Copy content Toggle raw display
1111 (T1)9 (T - 1)^{9} Copy content Toggle raw display
1313 (T+1)9 (T + 1)^{9} Copy content Toggle raw display
1717 T95T8++61022 T^{9} - 5 T^{8} + \cdots + 61022 Copy content Toggle raw display
1919 T910T8+19801 T^{9} - 10 T^{8} + \cdots - 19801 Copy content Toggle raw display
2323 T98T8+11536 T^{9} - 8 T^{8} + \cdots - 11536 Copy content Toggle raw display
2929 T914T8+147280 T^{9} - 14 T^{8} + \cdots - 147280 Copy content Toggle raw display
3131 T911T8+15554608 T^{9} - 11 T^{8} + \cdots - 15554608 Copy content Toggle raw display
3737 T9188T7++118400 T^{9} - 188 T^{7} + \cdots + 118400 Copy content Toggle raw display
4141 T914T8+1040000 T^{9} - 14 T^{8} + \cdots - 1040000 Copy content Toggle raw display
4343 T98T8++1770695 T^{9} - 8 T^{8} + \cdots + 1770695 Copy content Toggle raw display
4747 T910T8+11326672 T^{9} - 10 T^{8} + \cdots - 11326672 Copy content Toggle raw display
5353 T921T8+199204765 T^{9} - 21 T^{8} + \cdots - 199204765 Copy content Toggle raw display
5959 T923T8+775936 T^{9} - 23 T^{8} + \cdots - 775936 Copy content Toggle raw display
6161 T934T8++262558 T^{9} - 34 T^{8} + \cdots + 262558 Copy content Toggle raw display
6767 T910T8++235526 T^{9} - 10 T^{8} + \cdots + 235526 Copy content Toggle raw display
7171 T94T8+19670560 T^{9} - 4 T^{8} + \cdots - 19670560 Copy content Toggle raw display
7373 T99T8+41371456 T^{9} - 9 T^{8} + \cdots - 41371456 Copy content Toggle raw display
7979 T9+34T8++3373045 T^{9} + 34 T^{8} + \cdots + 3373045 Copy content Toggle raw display
8383 T915T8++743353 T^{9} - 15 T^{8} + \cdots + 743353 Copy content Toggle raw display
8989 T9538T7+318322999 T^{9} - 538 T^{7} + \cdots - 318322999 Copy content Toggle raw display
9797 T915T8++336832 T^{9} - 15 T^{8} + \cdots + 336832 Copy content Toggle raw display
show more
show less