Properties

Label 6005.2.a.e
Level 60056005
Weight 22
Character orbit 6005.a
Self dual yes
Analytic conductor 47.95047.950
Analytic rank 11
Dimension 8888
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6005,2,Mod(1,6005)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6005, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6005.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 6005=51201 6005 = 5 \cdot 1201
Weight: k k == 2 2
Character orbit: [χ][\chi] == 6005.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 47.950166413847.9501664138
Analytic rank: 11
Dimension: 8888
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

The algebraic qq-expansion of this newform has not been computed, but we have computed the trace expansion.

Tr(f)(q)=\operatorname{Tr}(f)(q) = 88q14q234q3+66q4+88q5q635q739q8+72q914q1026q1164q1231q1317q1434q15+34q1631q1742q1856q19+68q99+O(q100) 88 q - 14 q^{2} - 34 q^{3} + 66 q^{4} + 88 q^{5} - q^{6} - 35 q^{7} - 39 q^{8} + 72 q^{9} - 14 q^{10} - 26 q^{11} - 64 q^{12} - 31 q^{13} - 17 q^{14} - 34 q^{15} + 34 q^{16} - 31 q^{17} - 42 q^{18} - 56 q^{19}+ \cdots - 68 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1 −2.76833 −0.546396 5.66368 1.00000 1.51261 −1.48260 −10.1423 −2.70145 −2.76833
1.2 −2.70073 −2.65354 5.29393 1.00000 7.16648 −4.13839 −8.89601 4.04126 −2.70073
1.3 −2.69844 0.716329 5.28159 1.00000 −1.93297 1.67359 −8.85517 −2.48687 −2.69844
1.4 −2.69778 −3.22929 5.27799 1.00000 8.71190 2.27707 −8.84328 7.42831 −2.69778
1.5 −2.63715 2.33888 4.95457 1.00000 −6.16798 −0.829927 −7.79166 2.47036 −2.63715
1.6 −2.56191 2.09483 4.56337 1.00000 −5.36676 −0.643691 −6.56712 1.38832 −2.56191
1.7 −2.49547 −2.51949 4.22735 1.00000 6.28731 2.97292 −5.55828 3.34784 −2.49547
1.8 −2.45453 −0.943055 4.02473 1.00000 2.31476 −0.315218 −4.96977 −2.11065 −2.45453
1.9 −2.32346 1.00159 3.39848 1.00000 −2.32717 3.48702 −3.24933 −1.99681 −2.32346
1.10 −2.28766 −2.82727 3.23337 1.00000 6.46782 −3.61501 −2.82152 4.99347 −2.28766
1.11 −2.26517 2.21267 3.13101 1.00000 −5.01209 −3.04532 −2.56193 1.89592 −2.26517
1.12 −2.25928 −0.374349 3.10434 1.00000 0.845758 −3.16273 −2.49501 −2.85986 −2.25928
1.13 −2.21323 −3.30657 2.89841 1.00000 7.31821 −1.75850 −1.98838 7.93340 −2.21323
1.14 −2.21193 0.112500 2.89262 1.00000 −0.248842 −5.20479 −1.97441 −2.98734 −2.21193
1.15 −2.17289 −1.65848 2.72145 1.00000 3.60369 5.14399 −1.56762 −0.249442 −2.17289
1.16 −2.07691 −0.413168 2.31355 1.00000 0.858111 2.69878 −0.651210 −2.82929 −2.07691
1.17 −1.97194 2.67165 1.88854 1.00000 −5.26832 −0.758910 0.219801 4.13769 −1.97194
1.18 −1.97101 −1.60435 1.88489 1.00000 3.16220 2.33314 0.226875 −0.426059 −1.97101
1.19 −1.93565 −2.84784 1.74674 1.00000 5.51242 −0.215804 0.490231 5.11019 −1.93565
1.20 −1.89204 0.756696 1.57982 1.00000 −1.43170 1.91014 0.794996 −2.42741 −1.89204
See all 88 embeddings
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.88
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
55 1 -1
12011201 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6005.2.a.e 88
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6005.2.a.e 88 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T288+14T28723T2861205T2852777T284+47070T283++32 T_{2}^{88} + 14 T_{2}^{87} - 23 T_{2}^{86} - 1205 T_{2}^{85} - 2777 T_{2}^{84} + 47070 T_{2}^{83} + \cdots + 32 acting on S2new(Γ0(6005))S_{2}^{\mathrm{new}}(\Gamma_0(6005)). Copy content Toggle raw display