Properties

Label 8.10.a.a
Level 88
Weight 1010
Character orbit 8.a
Self dual yes
Analytic conductor 4.1204.120
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8,10,Mod(1,8)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: N N == 8=23 8 = 2^{3}
Weight: k k == 10 10
Character orbit: [χ][\chi] == 8.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 4.120286689314.12028668931
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q60q32074q54344q716083q9+93644q1112242q13+124440q15319598q17553516q19+260640q21712936q23+2348351q25+2145960q27+2075838q29+1506076452q99+O(q100) q - 60 q^{3} - 2074 q^{5} - 4344 q^{7} - 16083 q^{9} + 93644 q^{11} - 12242 q^{13} + 124440 q^{15} - 319598 q^{17} - 553516 q^{19} + 260640 q^{21} - 712936 q^{23} + 2348351 q^{25} + 2145960 q^{27} + 2075838 q^{29}+ \cdots - 1506076452 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 −60.0000 0 −2074.00 0 −4344.00 0 −16083.0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8.10.a.a 1
3.b odd 2 1 72.10.a.e 1
4.b odd 2 1 16.10.a.c 1
5.b even 2 1 200.10.a.b 1
5.c odd 4 2 200.10.c.b 2
7.b odd 2 1 392.10.a.b 1
8.b even 2 1 64.10.a.f 1
8.d odd 2 1 64.10.a.d 1
12.b even 2 1 144.10.a.n 1
16.e even 4 2 256.10.b.i 2
16.f odd 4 2 256.10.b.c 2
20.d odd 2 1 400.10.a.d 1
20.e even 4 2 400.10.c.g 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8.10.a.a 1 1.a even 1 1 trivial
16.10.a.c 1 4.b odd 2 1
64.10.a.d 1 8.d odd 2 1
64.10.a.f 1 8.b even 2 1
72.10.a.e 1 3.b odd 2 1
144.10.a.n 1 12.b even 2 1
200.10.a.b 1 5.b even 2 1
200.10.c.b 2 5.c odd 4 2
256.10.b.c 2 16.f odd 4 2
256.10.b.i 2 16.e even 4 2
392.10.a.b 1 7.b odd 2 1
400.10.a.d 1 20.d odd 2 1
400.10.c.g 2 20.e even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T3+60 T_{3} + 60 acting on S10new(Γ0(8))S_{10}^{\mathrm{new}}(\Gamma_0(8)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T+60 T + 60 Copy content Toggle raw display
55 T+2074 T + 2074 Copy content Toggle raw display
77 T+4344 T + 4344 Copy content Toggle raw display
1111 T93644 T - 93644 Copy content Toggle raw display
1313 T+12242 T + 12242 Copy content Toggle raw display
1717 T+319598 T + 319598 Copy content Toggle raw display
1919 T+553516 T + 553516 Copy content Toggle raw display
2323 T+712936 T + 712936 Copy content Toggle raw display
2929 T2075838 T - 2075838 Copy content Toggle raw display
3131 T+6420448 T + 6420448 Copy content Toggle raw display
3737 T+18197754 T + 18197754 Copy content Toggle raw display
4141 T9033834 T - 9033834 Copy content Toggle raw display
4343 T19594732 T - 19594732 Copy content Toggle raw display
4747 T+18484176 T + 18484176 Copy content Toggle raw display
5353 T10255766 T - 10255766 Copy content Toggle raw display
5959 T121666556 T - 121666556 Copy content Toggle raw display
6161 T+45948962 T + 45948962 Copy content Toggle raw display
6767 T50535428 T - 50535428 Copy content Toggle raw display
7171 T267044680 T - 267044680 Copy content Toggle raw display
7373 T+176213366 T + 176213366 Copy content Toggle raw display
7979 T+269685680 T + 269685680 Copy content Toggle raw display
8383 T+227032556 T + 227032556 Copy content Toggle raw display
8989 T72141594 T - 72141594 Copy content Toggle raw display
9797 T228776546 T - 228776546 Copy content Toggle raw display
show more
show less