Properties

Label 5.5.65657.1-53.1-b
Base field 5.5.65657.1
Weight $[2, 2, 2, 2, 2]$
Level norm $53$
Level $[53, 53, -w^{4} + w^{3} + 4 w^{2} - w - 4]$
Dimension $5$
CM no
Base change no

Related objects

Downloads

Learn more

Base field 5.5.65657.1

Generator \(w\), with minimal polynomial \(x^{5} - x^{4} - 5 x^{3} + 2 x^{2} + 5 x + 1\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2, 2]$
Level: $[53, 53, -w^{4} + w^{3} + 4 w^{2} - w - 4]$
Dimension: $5$
CM: no
Base change: no
Newspace dimension: $22$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^{5} + 3 x^{4} - 13 x^{3} - 23 x^{2} + 28 x - 3\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
3 $[3, 3, -w^{4} + w^{3} + 4 w^{2} - 2 w - 2]$ $-1$
5 $[5, 5, w^{2} - w - 2]$ $\phantom{-}e$
19 $[19, 19, w^{4} - 2 w^{3} - 4 w^{2} + 5 w + 4]$ $\phantom{-}\frac{7}{19} e^{4} + \frac{22}{19} e^{3} - \frac{96}{19} e^{2} - \frac{191}{19} e + \frac{166}{19}$
23 $[23, 23, -w^{3} + w^{2} + 3 w - 1]$ $-\frac{7}{19} e^{4} - \frac{22}{19} e^{3} + \frac{96}{19} e^{2} + \frac{191}{19} e - \frac{147}{19}$
29 $[29, 29, 2 w^{4} - 3 w^{3} - 8 w^{2} + 7 w + 4]$ $-\frac{4}{19} e^{4} - \frac{18}{19} e^{3} + \frac{44}{19} e^{2} + \frac{139}{19} e - \frac{141}{19}$
32 $[32, 2, 2]$ $-\frac{4}{19} e^{4} - \frac{18}{19} e^{3} + \frac{25}{19} e^{2} + \frac{158}{19} e + \frac{30}{19}$
37 $[37, 37, w^{3} - 2 w^{2} - 2 w + 2]$ $-\frac{11}{19} e^{4} - \frac{40}{19} e^{3} + \frac{121}{19} e^{2} + \frac{311}{19} e - \frac{212}{19}$
41 $[41, 41, -2 w^{4} + 3 w^{3} + 9 w^{2} - 8 w - 6]$ $\phantom{-}\frac{11}{19} e^{4} + \frac{40}{19} e^{3} - \frac{102}{19} e^{2} - \frac{292}{19} e + \frac{60}{19}$
43 $[43, 43, -2 w^{4} + 3 w^{3} + 8 w^{2} - 8 w - 6]$ $-\frac{6}{19} e^{4} - \frac{8}{19} e^{3} + \frac{85}{19} e^{2} + \frac{28}{19} e - \frac{164}{19}$
47 $[47, 47, w^{4} - 2 w^{3} - 5 w^{2} + 6 w + 5]$ $-\frac{2}{19} e^{4} - \frac{9}{19} e^{3} + \frac{22}{19} e^{2} + \frac{41}{19} e - \frac{42}{19}$
53 $[53, 53, -w^{4} + w^{3} + 4 w^{2} - w - 4]$ $-1$
61 $[61, 61, w^{2} - 2 w - 3]$ $\phantom{-}e^{4} + 3 e^{3} - 12 e^{2} - 22 e + 13$
67 $[67, 67, w^{4} - w^{3} - 4 w^{2} + 3 w]$ $\phantom{-}\frac{14}{19} e^{4} + \frac{44}{19} e^{3} - \frac{173}{19} e^{2} - \frac{344}{19} e + \frac{142}{19}$
67 $[67, 67, -w^{4} + w^{3} + 5 w^{2} - 2 w - 2]$ $-\frac{1}{19} e^{4} - \frac{14}{19} e^{3} - \frac{8}{19} e^{2} + \frac{125}{19} e - \frac{59}{19}$
71 $[71, 71, w^{4} - w^{3} - 4 w^{2} + 5]$ $\phantom{-}\frac{1}{19} e^{4} + \frac{14}{19} e^{3} - \frac{11}{19} e^{2} - \frac{144}{19} e + \frac{135}{19}$
71 $[71, 71, w^{4} - 2 w^{3} - 3 w^{2} + 5 w + 3]$ $\phantom{-}\frac{5}{19} e^{4} + \frac{13}{19} e^{3} - \frac{74}{19} e^{2} - \frac{150}{19} e + \frac{162}{19}$
71 $[71, 71, 2 w^{4} - 2 w^{3} - 8 w^{2} + 5 w + 4]$ $-\frac{14}{19} e^{4} - \frac{44}{19} e^{3} + \frac{173}{19} e^{2} + \frac{325}{19} e - \frac{351}{19}$
73 $[73, 73, -2 w^{4} + 2 w^{3} + 9 w^{2} - 5 w - 6]$ $\phantom{-}\frac{10}{19} e^{4} + \frac{26}{19} e^{3} - \frac{110}{19} e^{2} - \frac{129}{19} e + \frac{134}{19}$
81 $[81, 3, -2 w^{4} + 3 w^{3} + 10 w^{2} - 9 w - 10]$ $-\frac{5}{19} e^{4} - \frac{13}{19} e^{3} + \frac{55}{19} e^{2} - \frac{2}{19} e - \frac{67}{19}$
97 $[97, 97, -2 w^{4} + 3 w^{3} + 7 w^{2} - 5 w - 4]$ $\phantom{-}\frac{18}{19} e^{4} + \frac{62}{19} e^{3} - \frac{217}{19} e^{2} - \frac{559}{19} e + \frac{226}{19}$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$53$ $[53, 53, -w^{4} + w^{3} + 4 w^{2} - w - 4]$ $1$