Base field 5.5.65657.1
Generator \(w\), with minimal polynomial \(x^5 - x^4 - 5 x^3 + 2 x^2 + 5 x + 1\); narrow class number \(1\) and class number \(1\).
Form
Weight: | $[2, 2, 2, 2, 2]$ |
Level: | $[53, 53, -w^4 + w^3 + 4 w^2 - w - 4]$ |
Dimension: | $5$ |
CM: | no |
Base change: | no |
Newspace dimension: | $22$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
\(x^5 + 3 x^4 - 13 x^3 - 23 x^2 + 28 x - 3\) |
Show full eigenvalues Hide large eigenvalues
Norm | Prime | Eigenvalue |
---|---|---|
3 | $[3, 3, -w^4 + w^3 + 4 w^2 - 2 w - 2]$ | $-1$ |
5 | $[5, 5, w^2 - w - 2]$ | $\phantom{-}e$ |
19 | $[19, 19, w^4 - 2 w^3 - 4 w^2 + 5 w + 4]$ | $\phantom{-}\frac{7}{19} e^4 + \frac{22}{19} e^3 - \frac{96}{19} e^2 - \frac{191}{19} e + \frac{166}{19}$ |
23 | $[23, 23, -w^3 + w^2 + 3 w - 1]$ | $-\frac{7}{19} e^4 - \frac{22}{19} e^3 + \frac{96}{19} e^2 + \frac{191}{19} e - \frac{147}{19}$ |
29 | $[29, 29, 2 w^4 - 3 w^3 - 8 w^2 + 7 w + 4]$ | $-\frac{4}{19} e^4 - \frac{18}{19} e^3 + \frac{44}{19} e^2 + \frac{139}{19} e - \frac{141}{19}$ |
32 | $[32, 2, 2]$ | $-\frac{4}{19} e^4 - \frac{18}{19} e^3 + \frac{25}{19} e^2 + \frac{158}{19} e + \frac{30}{19}$ |
37 | $[37, 37, w^3 - 2 w^2 - 2 w + 2]$ | $-\frac{11}{19} e^4 - \frac{40}{19} e^3 + \frac{121}{19} e^2 + \frac{311}{19} e - \frac{212}{19}$ |
41 | $[41, 41, -2 w^4 + 3 w^3 + 9 w^2 - 8 w - 6]$ | $\phantom{-}\frac{11}{19} e^4 + \frac{40}{19} e^3 - \frac{102}{19} e^2 - \frac{292}{19} e + \frac{60}{19}$ |
43 | $[43, 43, -2 w^4 + 3 w^3 + 8 w^2 - 8 w - 6]$ | $-\frac{6}{19} e^4 - \frac{8}{19} e^3 + \frac{85}{19} e^2 + \frac{28}{19} e - \frac{164}{19}$ |
47 | $[47, 47, w^4 - 2 w^3 - 5 w^2 + 6 w + 5]$ | $-\frac{2}{19} e^4 - \frac{9}{19} e^3 + \frac{22}{19} e^2 + \frac{41}{19} e - \frac{42}{19}$ |
53 | $[53, 53, -w^4 + w^3 + 4 w^2 - w - 4]$ | $-1$ |
61 | $[61, 61, w^2 - 2 w - 3]$ | $\phantom{-}e^4 + 3 e^3 - 12 e^2 - 22 e + 13$ |
67 | $[67, 67, w^4 - w^3 - 4 w^2 + 3 w]$ | $\phantom{-}\frac{14}{19} e^4 + \frac{44}{19} e^3 - \frac{173}{19} e^2 - \frac{344}{19} e + \frac{142}{19}$ |
67 | $[67, 67, -w^4 + w^3 + 5 w^2 - 2 w - 2]$ | $-\frac{1}{19} e^4 - \frac{14}{19} e^3 - \frac{8}{19} e^2 + \frac{125}{19} e - \frac{59}{19}$ |
71 | $[71, 71, w^4 - w^3 - 4 w^2 + 5]$ | $\phantom{-}\frac{1}{19} e^4 + \frac{14}{19} e^3 - \frac{11}{19} e^2 - \frac{144}{19} e + \frac{135}{19}$ |
71 | $[71, 71, w^4 - 2 w^3 - 3 w^2 + 5 w + 3]$ | $\phantom{-}\frac{5}{19} e^4 + \frac{13}{19} e^3 - \frac{74}{19} e^2 - \frac{150}{19} e + \frac{162}{19}$ |
71 | $[71, 71, 2 w^4 - 2 w^3 - 8 w^2 + 5 w + 4]$ | $-\frac{14}{19} e^4 - \frac{44}{19} e^3 + \frac{173}{19} e^2 + \frac{325}{19} e - \frac{351}{19}$ |
73 | $[73, 73, -2 w^4 + 2 w^3 + 9 w^2 - 5 w - 6]$ | $\phantom{-}\frac{10}{19} e^4 + \frac{26}{19} e^3 - \frac{110}{19} e^2 - \frac{129}{19} e + \frac{134}{19}$ |
81 | $[81, 3, -2 w^4 + 3 w^3 + 10 w^2 - 9 w - 10]$ | $-\frac{5}{19} e^4 - \frac{13}{19} e^3 + \frac{55}{19} e^2 - \frac{2}{19} e - \frac{67}{19}$ |
97 | $[97, 97, -2 w^4 + 3 w^3 + 7 w^2 - 5 w - 4]$ | $\phantom{-}\frac{18}{19} e^4 + \frac{62}{19} e^3 - \frac{217}{19} e^2 - \frac{559}{19} e + \frac{226}{19}$ |
Atkin-Lehner eigenvalues
Norm | Prime | Eigenvalue |
---|---|---|
$53$ | $[53, 53, -w^4 + w^3 + 4 w^2 - w - 4]$ | $1$ |