Properties

Label 14.2.391066968923137.1
Degree 1414
Signature [2,6][2, 6]
Discriminant 3.911×10143.911\times 10^{14}
Root discriminant 11.0211.02
Ramified primes 13,97,10913,97,109
Class number 11
Class group trivial
Galois group C27.GL(3,2)C_2^7.\GL(3,2) (as 14T51)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^14 - 4*x^13 + 5*x^12 + 4*x^11 - 14*x^10 + 5*x^9 + 13*x^8 - 9*x^7 - 9*x^6 + 8*x^5 + 4*x^4 - 5*x^3 + x - 1)
 
gp: K = bnfinit(y^14 - 4*y^13 + 5*y^12 + 4*y^11 - 14*y^10 + 5*y^9 + 13*y^8 - 9*y^7 - 9*y^6 + 8*y^5 + 4*y^4 - 5*y^3 + y - 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^14 - 4*x^13 + 5*x^12 + 4*x^11 - 14*x^10 + 5*x^9 + 13*x^8 - 9*x^7 - 9*x^6 + 8*x^5 + 4*x^4 - 5*x^3 + x - 1);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^14 - 4*x^13 + 5*x^12 + 4*x^11 - 14*x^10 + 5*x^9 + 13*x^8 - 9*x^7 - 9*x^6 + 8*x^5 + 4*x^4 - 5*x^3 + x - 1)
 

x144x13+5x12+4x1114x10+5x9+13x89x79x6+8x5+1 x^{14} - 4 x^{13} + 5 x^{12} + 4 x^{11} - 14 x^{10} + 5 x^{9} + 13 x^{8} - 9 x^{7} - 9 x^{6} + 8 x^{5} + \cdots - 1 Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  1414
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  [2,6][2, 6]
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   391066968923137391066968923137 =134971094\medspace = 13^{4}\cdot 97\cdot 109^{4} Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  11.0211.02
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  131/2971/21091/2370.741149590924213^{1/2}97^{1/2}109^{1/2}\approx 370.7411495909242
Ramified primes:   1313, 9797, 109109 Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  Q(97)\Q(\sqrt{97})
Aut(K/Q)\Aut(K/\Q):   C2C_2
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over Q\Q.
This is not a CM field.

Integral basis (with respect to field generator aa)

11, aa, a2a^{2}, a3a^{3}, a4a^{4}, a5a^{5}, a6a^{6}, a7a^{7}, a8a^{8}, a9a^{9}, a10a^{10}, a11a^{11}, a12a^{12}, 1367a13152367a12+114367a11+14367a10+116367a9+86367a8+130367a7165367a6178367a572367a4+17367a3+48367a2131367a62367\frac{1}{367}a^{13}-\frac{152}{367}a^{12}+\frac{114}{367}a^{11}+\frac{14}{367}a^{10}+\frac{116}{367}a^{9}+\frac{86}{367}a^{8}+\frac{130}{367}a^{7}-\frac{165}{367}a^{6}-\frac{178}{367}a^{5}-\frac{72}{367}a^{4}+\frac{17}{367}a^{3}+\frac{48}{367}a^{2}-\frac{131}{367}a-\frac{62}{367} Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  11
Inessential primes:  None

Class group and class number

Ideal class group:  Trivial group, which has order 11
sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 
Narrow class group:  Trivial group, which has order 11

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  77
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   1 -1  (order 22) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   aa, 185367a13595367a12+538367a11+755367a101294367a9238367a8+1296367a764367a61368367a5+626367a4+209367a3662367a213367a+274367\frac{185}{367}a^{13}-\frac{595}{367}a^{12}+\frac{538}{367}a^{11}+\frac{755}{367}a^{10}-\frac{1294}{367}a^{9}-\frac{238}{367}a^{8}+\frac{1296}{367}a^{7}-\frac{64}{367}a^{6}-\frac{1368}{367}a^{5}+\frac{626}{367}a^{4}+\frac{209}{367}a^{3}-\frac{662}{367}a^{2}-\frac{13}{367}a+\frac{274}{367}, 38367a13271367a12+662367a11569367a10363367a9+699367a8+169367a7398367a6525367a5+567367a488367a311367a2207367a154367\frac{38}{367}a^{13}-\frac{271}{367}a^{12}+\frac{662}{367}a^{11}-\frac{569}{367}a^{10}-\frac{363}{367}a^{9}+\frac{699}{367}a^{8}+\frac{169}{367}a^{7}-\frac{398}{367}a^{6}-\frac{525}{367}a^{5}+\frac{567}{367}a^{4}-\frac{88}{367}a^{3}-\frac{11}{367}a^{2}-\frac{207}{367}a-\frac{154}{367}, 35367a13182367a12+320367a11+123367a101078367a9+808367a8+1247367a71738367a6725367a5+1517367a4+228367a3889367a2181367a+32367\frac{35}{367}a^{13}-\frac{182}{367}a^{12}+\frac{320}{367}a^{11}+\frac{123}{367}a^{10}-\frac{1078}{367}a^{9}+\frac{808}{367}a^{8}+\frac{1247}{367}a^{7}-\frac{1738}{367}a^{6}-\frac{725}{367}a^{5}+\frac{1517}{367}a^{4}+\frac{228}{367}a^{3}-\frac{889}{367}a^{2}-\frac{181}{367}a+\frac{32}{367}, 32367a1393367a1222367a11+448367a10692367a9+183367a8+490367a7876367a6+176367a5+632367a4190367a3666367a2+212367a+218367\frac{32}{367}a^{13}-\frac{93}{367}a^{12}-\frac{22}{367}a^{11}+\frac{448}{367}a^{10}-\frac{692}{367}a^{9}+\frac{183}{367}a^{8}+\frac{490}{367}a^{7}-\frac{876}{367}a^{6}+\frac{176}{367}a^{5}+\frac{632}{367}a^{4}-\frac{190}{367}a^{3}-\frac{666}{367}a^{2}+\frac{212}{367}a+\frac{218}{367}, 143367a13817367a12+1622367a11567367a102496367a9+2756367a8+974367a72309367a6498367a5+1448367a4+229367a3476367a216367a58367\frac{143}{367}a^{13}-\frac{817}{367}a^{12}+\frac{1622}{367}a^{11}-\frac{567}{367}a^{10}-\frac{2496}{367}a^{9}+\frac{2756}{367}a^{8}+\frac{974}{367}a^{7}-\frac{2309}{367}a^{6}-\frac{498}{367}a^{5}+\frac{1448}{367}a^{4}+\frac{229}{367}a^{3}-\frac{476}{367}a^{2}-\frac{16}{367}a-\frac{58}{367}, 33367a13245367a12+459367a11+95367a101310367a9+636367a8+1721367a71408367a61470367a5+1294367a4+1295367a3618367a2653367a+156367\frac{33}{367}a^{13}-\frac{245}{367}a^{12}+\frac{459}{367}a^{11}+\frac{95}{367}a^{10}-\frac{1310}{367}a^{9}+\frac{636}{367}a^{8}+\frac{1721}{367}a^{7}-\frac{1408}{367}a^{6}-\frac{1470}{367}a^{5}+\frac{1294}{367}a^{4}+\frac{1295}{367}a^{3}-\frac{618}{367}a^{2}-\frac{653}{367}a+\frac{156}{367} Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  35.8148412318 35.8148412318
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

lims1(s1)ζK(s)=(2r1(2π)r2RhwD(22(2π)635.814841231812391066968923137(0.222867462546 \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{6}\cdot 35.8148412318 \cdot 1}{2\cdot\sqrt{391066968923137}}\cr\approx \mathstrut & 0.222867462546 \end{aligned}

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^14 - 4*x^13 + 5*x^12 + 4*x^11 - 14*x^10 + 5*x^9 + 13*x^8 - 9*x^7 - 9*x^6 + 8*x^5 + 4*x^4 - 5*x^3 + x - 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^14 - 4*x^13 + 5*x^12 + 4*x^11 - 14*x^10 + 5*x^9 + 13*x^8 - 9*x^7 - 9*x^6 + 8*x^5 + 4*x^4 - 5*x^3 + x - 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^14 - 4*x^13 + 5*x^12 + 4*x^11 - 14*x^10 + 5*x^9 + 13*x^8 - 9*x^7 - 9*x^6 + 8*x^5 + 4*x^4 - 5*x^3 + x - 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^14 - 4*x^13 + 5*x^12 + 4*x^11 - 14*x^10 + 5*x^9 + 13*x^8 - 9*x^7 - 9*x^6 + 8*x^5 + 4*x^4 - 5*x^3 + x - 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

C27.GL(3,2)C_2^7.\GL(3,2) (as 14T51):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 21504
The 48 conjugacy class representatives for C27.GL(3,2)C_2^7.\GL(3,2)
Character table for C27.GL(3,2)C_2^7.\GL(3,2)

Intermediate fields

7.3.2007889.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 14 sibling: data not computed
Degree 28 siblings: data not computed
Degree 42 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

pp 22 33 55 77 1111 1313 1717 1919 2323 2929 3131 3737 4141 4343 4747 5353 5959
Cycle type 72{\href{/padicField/2.7.0.1}{7} }^{2} 72{\href{/padicField/3.7.0.1}{7} }^{2} 14{\href{/padicField/5.14.0.1}{14} } 6,32,12{\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.3.0.1}{3} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }^{2} 6,32,2{\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.3.0.1}{3} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} } R 62,2{\href{/padicField/17.6.0.1}{6} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} } 8,4,2{\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} } 14{\href{/padicField/23.14.0.1}{14} } 34,2{\href{/padicField/29.3.0.1}{3} }^{4}{,}\,{\href{/padicField/29.2.0.1}{2} } 43,2{\href{/padicField/31.4.0.1}{4} }^{3}{,}\,{\href{/padicField/31.2.0.1}{2} } 34,2{\href{/padicField/37.3.0.1}{3} }^{4}{,}\,{\href{/padicField/37.2.0.1}{2} } 42,23{\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{3} 72{\href{/padicField/43.7.0.1}{7} }^{2} 72{\href{/padicField/47.7.0.1}{7} }^{2} 8,23{\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{3} 42,23{\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{3}

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of [ei,fi][e_i,f_i] for the factorization of the ideal pOKp\mathcal{O}_K for p=7p=7 in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of [ei,fi][e_i,f_i] for the factorization of the ideal pOKp\mathcal{O}_K for p=7p=7 in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of [ei,fi][e_i,f_i] for the factorization of the ideal pOKp\mathcal{O}_K for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of [ei,fi][e_i,f_i] for the factorization of the ideal pOKp\mathcal{O}_K for p=7p=7 in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

ppLabelPolynomial ee ff cc Galois group Slope content
1313 Copy content Toggle raw display Q13\Q_{13}x+11x + 11111100Trivial[ ][\ ]
Q13\Q_{13}x+11x + 11111100Trivial[ ][\ ]
13.2.2.2a1.1x4+24x3+148x2+61x+4x^{4} + 24 x^{3} + 148 x^{2} + 61 x + 4222222C4C_4[ ]22[\ ]_{2}^{2}
13.2.2.2a1.1x4+24x3+148x2+61x+4x^{4} + 24 x^{3} + 148 x^{2} + 61 x + 4222222C4C_4[ ]22[\ ]_{2}^{2}
13.4.1.0a1.1x4+3x2+12x+2x^{4} + 3 x^{2} + 12 x + 2114400C4C_4[ ]4[\ ]^{4}
9797 Copy content Toggle raw display 97.1.2.1a1.1x2+97x^{2} + 97221111C2C_2[ ]2[\ ]_{2}
97.6.1.0a1.1x6+92x3+58x2+88x+5x^{6} + 92 x^{3} + 58 x^{2} + 88 x + 5116600C6C_6[ ]6[\ ]^{6}
97.6.1.0a1.1x6+92x3+58x2+88x+5x^{6} + 92 x^{3} + 58 x^{2} + 88 x + 5116600C6C_6[ ]6[\ ]^{6}
109109 Copy content Toggle raw display Q109\Q_{109}x+103x + 103111100Trivial[ ][\ ]
Q109\Q_{109}x+103x + 103111100Trivial[ ][\ ]
109.2.1.0a1.1x2+108x+6x^{2} + 108 x + 6112200C2C_2[ ]2[\ ]^{2}
109.2.1.0a1.1x2+108x+6x^{2} + 108 x + 6112200C2C_2[ ]2[\ ]^{2}
109.4.2.4a1.2x8+22x6+196x5+133x4+2156x3+9736x2+1176x+145x^{8} + 22 x^{6} + 196 x^{5} + 133 x^{4} + 2156 x^{3} + 9736 x^{2} + 1176 x + 145224444C4×C2C_4\times C_2[ ]24[\ ]_{2}^{4}

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)