Properties

Label 24.0.180...000.1
Degree $24$
Signature $[0, 12]$
Discriminant $1.808\times 10^{31}$
Root discriminant \(20.06\)
Ramified primes $2,3,5$
Class number $2$ (GRH)
Class group [2] (GRH)
Galois group $S_3\times C_{12}$ (as 24T65)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^24 - 6*x^23 + 23*x^22 - 58*x^21 + 100*x^20 - 160*x^19 + 242*x^18 - 156*x^17 - 228*x^16 + 452*x^15 + 164*x^14 - 1190*x^13 + 1288*x^12 - 326*x^11 - 800*x^10 + 832*x^9 + 514*x^8 - 1302*x^7 + 500*x^6 + 664*x^5 - 155*x^4 - 1418*x^3 + 1951*x^2 - 1112*x + 241)
 
gp: K = bnfinit(y^24 - 6*y^23 + 23*y^22 - 58*y^21 + 100*y^20 - 160*y^19 + 242*y^18 - 156*y^17 - 228*y^16 + 452*y^15 + 164*y^14 - 1190*y^13 + 1288*y^12 - 326*y^11 - 800*y^10 + 832*y^9 + 514*y^8 - 1302*y^7 + 500*y^6 + 664*y^5 - 155*y^4 - 1418*y^3 + 1951*y^2 - 1112*y + 241, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^24 - 6*x^23 + 23*x^22 - 58*x^21 + 100*x^20 - 160*x^19 + 242*x^18 - 156*x^17 - 228*x^16 + 452*x^15 + 164*x^14 - 1190*x^13 + 1288*x^12 - 326*x^11 - 800*x^10 + 832*x^9 + 514*x^8 - 1302*x^7 + 500*x^6 + 664*x^5 - 155*x^4 - 1418*x^3 + 1951*x^2 - 1112*x + 241);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^24 - 6*x^23 + 23*x^22 - 58*x^21 + 100*x^20 - 160*x^19 + 242*x^18 - 156*x^17 - 228*x^16 + 452*x^15 + 164*x^14 - 1190*x^13 + 1288*x^12 - 326*x^11 - 800*x^10 + 832*x^9 + 514*x^8 - 1302*x^7 + 500*x^6 + 664*x^5 - 155*x^4 - 1418*x^3 + 1951*x^2 - 1112*x + 241)
 

\( x^{24} - 6 x^{23} + 23 x^{22} - 58 x^{21} + 100 x^{20} - 160 x^{19} + 242 x^{18} - 156 x^{17} + \cdots + 241 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $24$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 12]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(18075490334784000000000000000000\) \(\medspace = 2^{24}\cdot 3^{24}\cdot 5^{18}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(20.06\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 3^{3/2}5^{3/4}\approx 34.748765558648074$
Ramified primes:   \(2\), \(3\), \(5\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $12$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{19}a^{20}-\frac{4}{19}a^{19}-\frac{7}{19}a^{18}-\frac{7}{19}a^{17}+\frac{7}{19}a^{16}+\frac{6}{19}a^{15}+\frac{9}{19}a^{14}+\frac{1}{19}a^{13}-\frac{6}{19}a^{12}+\frac{9}{19}a^{11}+\frac{7}{19}a^{10}-\frac{3}{19}a^{9}+\frac{2}{19}a^{8}+\frac{2}{19}a^{7}-\frac{6}{19}a^{6}-\frac{5}{19}a^{5}-\frac{3}{19}a^{4}+\frac{9}{19}a^{2}+\frac{1}{19}a-\frac{3}{19}$, $\frac{1}{19}a^{21}-\frac{4}{19}a^{19}+\frac{3}{19}a^{18}-\frac{2}{19}a^{17}-\frac{4}{19}a^{16}-\frac{5}{19}a^{15}-\frac{1}{19}a^{14}-\frac{2}{19}a^{13}+\frac{4}{19}a^{12}+\frac{5}{19}a^{11}+\frac{6}{19}a^{10}+\frac{9}{19}a^{9}-\frac{9}{19}a^{8}+\frac{2}{19}a^{7}+\frac{9}{19}a^{6}-\frac{4}{19}a^{5}+\frac{7}{19}a^{4}+\frac{9}{19}a^{3}-\frac{1}{19}a^{2}+\frac{1}{19}a+\frac{7}{19}$, $\frac{1}{520391}a^{22}+\frac{4421}{520391}a^{21}-\frac{652}{520391}a^{20}-\frac{229390}{520391}a^{19}+\frac{251383}{520391}a^{18}-\frac{42842}{520391}a^{17}+\frac{253826}{520391}a^{16}+\frac{244452}{520391}a^{15}-\frac{93874}{520391}a^{14}+\frac{241295}{520391}a^{13}-\frac{55259}{520391}a^{12}-\frac{117101}{520391}a^{11}-\frac{253938}{520391}a^{10}+\frac{4691}{27389}a^{9}-\frac{143170}{520391}a^{8}+\frac{79622}{520391}a^{7}+\frac{228524}{520391}a^{6}-\frac{3747}{8531}a^{5}+\frac{228049}{520391}a^{4}+\frac{5531}{520391}a^{3}-\frac{106620}{520391}a^{2}-\frac{195112}{520391}a-\frac{231627}{520391}$, $\frac{1}{41\!\cdots\!89}a^{23}-\frac{10\!\cdots\!84}{41\!\cdots\!89}a^{22}-\frac{10\!\cdots\!26}{41\!\cdots\!89}a^{21}+\frac{85\!\cdots\!55}{41\!\cdots\!89}a^{20}+\frac{28\!\cdots\!69}{22\!\cdots\!31}a^{19}-\frac{18\!\cdots\!30}{41\!\cdots\!89}a^{18}+\frac{10\!\cdots\!71}{41\!\cdots\!89}a^{17}+\frac{25\!\cdots\!62}{41\!\cdots\!89}a^{16}+\frac{23\!\cdots\!47}{41\!\cdots\!89}a^{15}+\frac{98\!\cdots\!83}{41\!\cdots\!89}a^{14}-\frac{16\!\cdots\!97}{41\!\cdots\!89}a^{13}-\frac{32\!\cdots\!60}{41\!\cdots\!89}a^{12}+\frac{14\!\cdots\!54}{41\!\cdots\!89}a^{11}-\frac{56\!\cdots\!30}{14\!\cdots\!41}a^{10}-\frac{85\!\cdots\!66}{41\!\cdots\!89}a^{9}-\frac{15\!\cdots\!36}{41\!\cdots\!89}a^{8}+\frac{30\!\cdots\!82}{41\!\cdots\!89}a^{7}-\frac{14\!\cdots\!48}{41\!\cdots\!89}a^{6}-\frac{21\!\cdots\!81}{41\!\cdots\!89}a^{5}-\frac{17\!\cdots\!35}{41\!\cdots\!89}a^{4}+\frac{10\!\cdots\!70}{41\!\cdots\!89}a^{3}+\frac{10\!\cdots\!22}{41\!\cdots\!89}a^{2}-\frac{11\!\cdots\!45}{41\!\cdots\!89}a+\frac{22\!\cdots\!29}{91\!\cdots\!91}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $11$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{73616946842978946}{385899254913200159} a^{23} - \frac{7462656356153571980}{7332085843350803021} a^{22} + \frac{27199219556983244939}{7332085843350803021} a^{21} - \frac{63003113424945170569}{7332085843350803021} a^{20} + \frac{97853678341237425469}{7332085843350803021} a^{19} - \frac{158509176010303132348}{7332085843350803021} a^{18} + \frac{232899148742777208807}{7332085843350803021} a^{17} - \frac{62853260300608451637}{7332085843350803021} a^{16} - \frac{361334797096169948987}{7332085843350803021} a^{15} + \frac{390773395557468131143}{7332085843350803021} a^{14} + \frac{491465161484057999336}{7332085843350803021} a^{13} - \frac{1336747531522870070326}{7332085843350803021} a^{12} + \frac{907671804585560377208}{7332085843350803021} a^{11} + \frac{129018987937036181}{6326217293659019} a^{10} - \frac{1014351005174727814448}{7332085843350803021} a^{9} + \frac{485370744649705117064}{7332085843350803021} a^{8} + \frac{1045162766334852803796}{7332085843350803021} a^{7} - \frac{1122011553221285078722}{7332085843350803021} a^{6} - \frac{55062761327452545061}{7332085843350803021} a^{5} + \frac{886012307751874158164}{7332085843350803021} a^{4} + \frac{19877686242970701284}{385899254913200159} a^{3} - \frac{1734124202687164364017}{7332085843350803021} a^{2} + \frac{82737670931200852412}{385899254913200159} a - \frac{508948454126450352214}{7332085843350803021} \)  (order $4$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{82\!\cdots\!79}{41\!\cdots\!89}a^{23}-\frac{43\!\cdots\!71}{41\!\cdots\!89}a^{22}+\frac{15\!\cdots\!39}{41\!\cdots\!89}a^{21}-\frac{36\!\cdots\!93}{41\!\cdots\!89}a^{20}+\frac{56\!\cdots\!73}{41\!\cdots\!89}a^{19}-\frac{92\!\cdots\!44}{41\!\cdots\!89}a^{18}+\frac{13\!\cdots\!27}{41\!\cdots\!89}a^{17}-\frac{35\!\cdots\!86}{41\!\cdots\!89}a^{16}-\frac{21\!\cdots\!50}{41\!\cdots\!89}a^{15}+\frac{22\!\cdots\!57}{41\!\cdots\!89}a^{14}+\frac{29\!\cdots\!80}{41\!\cdots\!89}a^{13}-\frac{77\!\cdots\!37}{41\!\cdots\!89}a^{12}+\frac{52\!\cdots\!85}{41\!\cdots\!89}a^{11}+\frac{32\!\cdots\!72}{14\!\cdots\!41}a^{10}-\frac{59\!\cdots\!65}{41\!\cdots\!89}a^{9}+\frac{27\!\cdots\!31}{41\!\cdots\!89}a^{8}+\frac{61\!\cdots\!58}{41\!\cdots\!89}a^{7}-\frac{34\!\cdots\!01}{22\!\cdots\!31}a^{6}-\frac{39\!\cdots\!47}{41\!\cdots\!89}a^{5}+\frac{51\!\cdots\!04}{41\!\cdots\!89}a^{4}+\frac{23\!\cdots\!82}{41\!\cdots\!89}a^{3}-\frac{10\!\cdots\!86}{41\!\cdots\!89}a^{2}+\frac{90\!\cdots\!40}{41\!\cdots\!89}a-\frac{11\!\cdots\!31}{17\!\cdots\!29}$, $\frac{10\!\cdots\!89}{41\!\cdots\!89}a^{23}-\frac{53\!\cdots\!56}{41\!\cdots\!89}a^{22}+\frac{19\!\cdots\!68}{41\!\cdots\!89}a^{21}-\frac{45\!\cdots\!59}{41\!\cdots\!89}a^{20}+\frac{71\!\cdots\!52}{41\!\cdots\!89}a^{19}-\frac{11\!\cdots\!57}{41\!\cdots\!89}a^{18}+\frac{89\!\cdots\!46}{22\!\cdots\!31}a^{17}-\frac{48\!\cdots\!38}{41\!\cdots\!89}a^{16}-\frac{25\!\cdots\!01}{41\!\cdots\!89}a^{15}+\frac{28\!\cdots\!31}{41\!\cdots\!89}a^{14}+\frac{34\!\cdots\!48}{41\!\cdots\!89}a^{13}-\frac{97\!\cdots\!93}{41\!\cdots\!89}a^{12}+\frac{67\!\cdots\!91}{41\!\cdots\!89}a^{11}+\frac{34\!\cdots\!10}{14\!\cdots\!41}a^{10}-\frac{73\!\cdots\!55}{41\!\cdots\!89}a^{9}+\frac{36\!\cdots\!35}{41\!\cdots\!89}a^{8}+\frac{74\!\cdots\!65}{41\!\cdots\!89}a^{7}-\frac{43\!\cdots\!25}{22\!\cdots\!31}a^{6}-\frac{28\!\cdots\!08}{41\!\cdots\!89}a^{5}+\frac{65\!\cdots\!61}{41\!\cdots\!89}a^{4}+\frac{25\!\cdots\!67}{41\!\cdots\!89}a^{3}-\frac{12\!\cdots\!12}{41\!\cdots\!89}a^{2}+\frac{11\!\cdots\!14}{41\!\cdots\!89}a-\frac{15\!\cdots\!62}{17\!\cdots\!29}$, $\frac{28\!\cdots\!32}{41\!\cdots\!89}a^{23}-\frac{15\!\cdots\!83}{41\!\cdots\!89}a^{22}+\frac{29\!\cdots\!61}{22\!\cdots\!31}a^{21}-\frac{13\!\cdots\!59}{41\!\cdots\!89}a^{20}+\frac{20\!\cdots\!78}{41\!\cdots\!89}a^{19}-\frac{33\!\cdots\!26}{41\!\cdots\!89}a^{18}+\frac{48\!\cdots\!97}{41\!\cdots\!89}a^{17}-\frac{14\!\cdots\!44}{41\!\cdots\!89}a^{16}-\frac{73\!\cdots\!92}{41\!\cdots\!89}a^{15}+\frac{83\!\cdots\!91}{41\!\cdots\!89}a^{14}+\frac{97\!\cdots\!88}{41\!\cdots\!89}a^{13}-\frac{27\!\cdots\!48}{41\!\cdots\!89}a^{12}+\frac{19\!\cdots\!24}{41\!\cdots\!89}a^{11}+\frac{85\!\cdots\!43}{14\!\cdots\!41}a^{10}-\frac{21\!\cdots\!65}{41\!\cdots\!89}a^{9}+\frac{10\!\cdots\!83}{41\!\cdots\!89}a^{8}+\frac{21\!\cdots\!34}{41\!\cdots\!89}a^{7}-\frac{24\!\cdots\!60}{41\!\cdots\!89}a^{6}-\frac{39\!\cdots\!11}{41\!\cdots\!89}a^{5}+\frac{18\!\cdots\!28}{41\!\cdots\!89}a^{4}+\frac{69\!\cdots\!80}{41\!\cdots\!89}a^{3}-\frac{35\!\cdots\!15}{41\!\cdots\!89}a^{2}+\frac{33\!\cdots\!08}{41\!\cdots\!89}a-\frac{48\!\cdots\!57}{17\!\cdots\!29}$, $\frac{11\!\cdots\!95}{41\!\cdots\!89}a^{23}-\frac{25\!\cdots\!68}{22\!\cdots\!31}a^{22}+\frac{36\!\cdots\!15}{93\!\cdots\!61}a^{21}-\frac{32\!\cdots\!89}{41\!\cdots\!89}a^{20}+\frac{41\!\cdots\!87}{41\!\cdots\!89}a^{19}-\frac{80\!\cdots\!02}{41\!\cdots\!89}a^{18}+\frac{10\!\cdots\!25}{41\!\cdots\!89}a^{17}+\frac{58\!\cdots\!82}{41\!\cdots\!89}a^{16}-\frac{21\!\cdots\!50}{41\!\cdots\!89}a^{15}+\frac{36\!\cdots\!69}{41\!\cdots\!89}a^{14}+\frac{48\!\cdots\!91}{41\!\cdots\!89}a^{13}-\frac{55\!\cdots\!65}{41\!\cdots\!89}a^{12}-\frac{60\!\cdots\!74}{41\!\cdots\!89}a^{11}+\frac{75\!\cdots\!43}{14\!\cdots\!41}a^{10}-\frac{46\!\cdots\!54}{41\!\cdots\!89}a^{9}-\frac{28\!\cdots\!05}{41\!\cdots\!89}a^{8}+\frac{83\!\cdots\!72}{41\!\cdots\!89}a^{7}+\frac{27\!\cdots\!01}{41\!\cdots\!89}a^{6}-\frac{80\!\cdots\!52}{41\!\cdots\!89}a^{5}+\frac{31\!\cdots\!90}{41\!\cdots\!89}a^{4}+\frac{45\!\cdots\!40}{41\!\cdots\!89}a^{3}-\frac{79\!\cdots\!11}{41\!\cdots\!89}a^{2}+\frac{37\!\cdots\!86}{41\!\cdots\!89}a-\frac{88\!\cdots\!91}{17\!\cdots\!29}$, $\frac{52\!\cdots\!87}{41\!\cdots\!89}a^{23}-\frac{46\!\cdots\!60}{68\!\cdots\!49}a^{22}+\frac{10\!\cdots\!15}{41\!\cdots\!89}a^{21}-\frac{23\!\cdots\!01}{41\!\cdots\!89}a^{20}+\frac{37\!\cdots\!72}{41\!\cdots\!89}a^{19}-\frac{60\!\cdots\!20}{41\!\cdots\!89}a^{18}+\frac{88\!\cdots\!17}{41\!\cdots\!89}a^{17}-\frac{25\!\cdots\!54}{41\!\cdots\!89}a^{16}-\frac{13\!\cdots\!59}{41\!\cdots\!89}a^{15}+\frac{15\!\cdots\!20}{41\!\cdots\!89}a^{14}+\frac{18\!\cdots\!58}{41\!\cdots\!89}a^{13}-\frac{51\!\cdots\!88}{41\!\cdots\!89}a^{12}+\frac{35\!\cdots\!51}{41\!\cdots\!89}a^{11}+\frac{19\!\cdots\!32}{14\!\cdots\!41}a^{10}-\frac{38\!\cdots\!98}{41\!\cdots\!89}a^{9}+\frac{18\!\cdots\!11}{41\!\cdots\!89}a^{8}+\frac{39\!\cdots\!39}{41\!\cdots\!89}a^{7}-\frac{43\!\cdots\!31}{41\!\cdots\!89}a^{6}-\frac{18\!\cdots\!97}{41\!\cdots\!89}a^{5}+\frac{18\!\cdots\!76}{22\!\cdots\!31}a^{4}+\frac{14\!\cdots\!39}{41\!\cdots\!89}a^{3}-\frac{66\!\cdots\!92}{41\!\cdots\!89}a^{2}+\frac{52\!\cdots\!84}{36\!\cdots\!71}a-\frac{80\!\cdots\!07}{17\!\cdots\!29}$, $\frac{34\!\cdots\!74}{80\!\cdots\!79}a^{23}-\frac{91\!\cdots\!73}{42\!\cdots\!41}a^{22}+\frac{61\!\cdots\!32}{80\!\cdots\!79}a^{21}-\frac{13\!\cdots\!83}{80\!\cdots\!79}a^{20}+\frac{18\!\cdots\!30}{80\!\cdots\!79}a^{19}-\frac{29\!\cdots\!07}{80\!\cdots\!79}a^{18}+\frac{43\!\cdots\!26}{80\!\cdots\!79}a^{17}+\frac{50\!\cdots\!65}{80\!\cdots\!79}a^{16}-\frac{98\!\cdots\!64}{80\!\cdots\!79}a^{15}+\frac{60\!\cdots\!39}{80\!\cdots\!79}a^{14}+\frac{17\!\cdots\!16}{80\!\cdots\!79}a^{13}-\frac{15\!\cdots\!26}{42\!\cdots\!41}a^{12}+\frac{83\!\cdots\!98}{80\!\cdots\!79}a^{11}+\frac{14\!\cdots\!55}{80\!\cdots\!79}a^{10}-\frac{20\!\cdots\!60}{80\!\cdots\!79}a^{9}+\frac{76\!\cdots\!21}{80\!\cdots\!79}a^{8}+\frac{29\!\cdots\!46}{80\!\cdots\!79}a^{7}-\frac{10\!\cdots\!26}{42\!\cdots\!41}a^{6}-\frac{19\!\cdots\!00}{80\!\cdots\!79}a^{5}+\frac{16\!\cdots\!45}{80\!\cdots\!79}a^{4}+\frac{24\!\cdots\!36}{80\!\cdots\!79}a^{3}-\frac{38\!\cdots\!33}{80\!\cdots\!79}a^{2}+\frac{19\!\cdots\!14}{80\!\cdots\!79}a+\frac{12\!\cdots\!65}{33\!\cdots\!19}$, $\frac{13\!\cdots\!18}{23\!\cdots\!81}a^{23}-\frac{43\!\cdots\!71}{14\!\cdots\!41}a^{22}+\frac{15\!\cdots\!93}{14\!\cdots\!41}a^{21}-\frac{36\!\cdots\!95}{14\!\cdots\!41}a^{20}+\frac{57\!\cdots\!01}{14\!\cdots\!41}a^{19}-\frac{93\!\cdots\!58}{14\!\cdots\!41}a^{18}+\frac{71\!\cdots\!26}{76\!\cdots\!39}a^{17}-\frac{37\!\cdots\!15}{14\!\cdots\!41}a^{16}-\frac{21\!\cdots\!64}{14\!\cdots\!41}a^{15}+\frac{23\!\cdots\!45}{14\!\cdots\!41}a^{14}+\frac{28\!\cdots\!30}{14\!\cdots\!41}a^{13}-\frac{78\!\cdots\!28}{14\!\cdots\!41}a^{12}+\frac{53\!\cdots\!51}{14\!\cdots\!41}a^{11}+\frac{88\!\cdots\!75}{14\!\cdots\!41}a^{10}-\frac{59\!\cdots\!08}{14\!\cdots\!41}a^{9}+\frac{28\!\cdots\!46}{14\!\cdots\!41}a^{8}+\frac{61\!\cdots\!63}{14\!\cdots\!41}a^{7}-\frac{66\!\cdots\!71}{14\!\cdots\!41}a^{6}-\frac{50\!\cdots\!43}{23\!\cdots\!81}a^{5}+\frac{52\!\cdots\!25}{14\!\cdots\!41}a^{4}+\frac{21\!\cdots\!79}{14\!\cdots\!41}a^{3}-\frac{10\!\cdots\!50}{14\!\cdots\!41}a^{2}+\frac{92\!\cdots\!82}{14\!\cdots\!41}a-\frac{12\!\cdots\!82}{60\!\cdots\!01}$, $\frac{21\!\cdots\!11}{41\!\cdots\!89}a^{23}-\frac{11\!\cdots\!92}{41\!\cdots\!89}a^{22}+\frac{41\!\cdots\!07}{41\!\cdots\!89}a^{21}-\frac{50\!\cdots\!11}{22\!\cdots\!31}a^{20}+\frac{15\!\cdots\!10}{41\!\cdots\!89}a^{19}-\frac{24\!\cdots\!70}{41\!\cdots\!89}a^{18}+\frac{35\!\cdots\!86}{41\!\cdots\!89}a^{17}-\frac{10\!\cdots\!46}{41\!\cdots\!89}a^{16}-\frac{54\!\cdots\!15}{41\!\cdots\!89}a^{15}+\frac{60\!\cdots\!03}{41\!\cdots\!89}a^{14}+\frac{73\!\cdots\!24}{41\!\cdots\!89}a^{13}-\frac{20\!\cdots\!35}{41\!\cdots\!89}a^{12}+\frac{14\!\cdots\!87}{41\!\cdots\!89}a^{11}+\frac{73\!\cdots\!76}{14\!\cdots\!41}a^{10}-\frac{15\!\cdots\!34}{41\!\cdots\!89}a^{9}+\frac{76\!\cdots\!73}{41\!\cdots\!89}a^{8}+\frac{83\!\cdots\!06}{22\!\cdots\!31}a^{7}-\frac{17\!\cdots\!76}{41\!\cdots\!89}a^{6}-\frac{53\!\cdots\!40}{41\!\cdots\!89}a^{5}+\frac{13\!\cdots\!74}{41\!\cdots\!89}a^{4}+\frac{54\!\cdots\!55}{41\!\cdots\!89}a^{3}-\frac{26\!\cdots\!07}{41\!\cdots\!89}a^{2}+\frac{24\!\cdots\!75}{41\!\cdots\!89}a-\frac{33\!\cdots\!75}{17\!\cdots\!29}$, $\frac{22\!\cdots\!17}{41\!\cdots\!89}a^{23}-\frac{12\!\cdots\!09}{41\!\cdots\!89}a^{22}+\frac{44\!\cdots\!52}{41\!\cdots\!89}a^{21}-\frac{10\!\cdots\!65}{41\!\cdots\!89}a^{20}+\frac{16\!\cdots\!58}{41\!\cdots\!89}a^{19}-\frac{26\!\cdots\!83}{41\!\cdots\!89}a^{18}+\frac{38\!\cdots\!39}{41\!\cdots\!89}a^{17}-\frac{10\!\cdots\!82}{41\!\cdots\!89}a^{16}-\frac{59\!\cdots\!55}{41\!\cdots\!89}a^{15}+\frac{65\!\cdots\!05}{41\!\cdots\!89}a^{14}+\frac{13\!\cdots\!35}{68\!\cdots\!49}a^{13}-\frac{22\!\cdots\!28}{41\!\cdots\!89}a^{12}+\frac{15\!\cdots\!51}{41\!\cdots\!89}a^{11}+\frac{84\!\cdots\!11}{14\!\cdots\!41}a^{10}-\frac{16\!\cdots\!98}{41\!\cdots\!89}a^{9}+\frac{81\!\cdots\!65}{41\!\cdots\!89}a^{8}+\frac{16\!\cdots\!94}{41\!\cdots\!89}a^{7}-\frac{18\!\cdots\!26}{41\!\cdots\!89}a^{6}-\frac{92\!\cdots\!38}{41\!\cdots\!89}a^{5}+\frac{14\!\cdots\!98}{41\!\cdots\!89}a^{4}+\frac{60\!\cdots\!92}{41\!\cdots\!89}a^{3}-\frac{28\!\cdots\!20}{41\!\cdots\!89}a^{2}+\frac{26\!\cdots\!25}{41\!\cdots\!89}a-\frac{35\!\cdots\!24}{17\!\cdots\!29}$, $\frac{75\!\cdots\!31}{41\!\cdots\!89}a^{23}-\frac{40\!\cdots\!81}{41\!\cdots\!89}a^{22}+\frac{14\!\cdots\!56}{41\!\cdots\!89}a^{21}-\frac{33\!\cdots\!53}{41\!\cdots\!89}a^{20}+\frac{52\!\cdots\!38}{41\!\cdots\!89}a^{19}-\frac{85\!\cdots\!13}{41\!\cdots\!89}a^{18}+\frac{12\!\cdots\!38}{41\!\cdots\!89}a^{17}-\frac{32\!\cdots\!31}{41\!\cdots\!89}a^{16}-\frac{19\!\cdots\!09}{41\!\cdots\!89}a^{15}+\frac{20\!\cdots\!17}{41\!\cdots\!89}a^{14}+\frac{26\!\cdots\!27}{41\!\cdots\!89}a^{13}-\frac{71\!\cdots\!14}{41\!\cdots\!89}a^{12}+\frac{48\!\cdots\!70}{41\!\cdots\!89}a^{11}+\frac{26\!\cdots\!66}{14\!\cdots\!41}a^{10}-\frac{54\!\cdots\!74}{41\!\cdots\!89}a^{9}+\frac{25\!\cdots\!11}{41\!\cdots\!89}a^{8}+\frac{55\!\cdots\!54}{41\!\cdots\!89}a^{7}-\frac{59\!\cdots\!26}{41\!\cdots\!89}a^{6}-\frac{17\!\cdots\!75}{41\!\cdots\!89}a^{5}+\frac{48\!\cdots\!40}{41\!\cdots\!89}a^{4}+\frac{20\!\cdots\!61}{41\!\cdots\!89}a^{3}-\frac{92\!\cdots\!54}{41\!\cdots\!89}a^{2}+\frac{84\!\cdots\!62}{41\!\cdots\!89}a-\frac{11\!\cdots\!36}{17\!\cdots\!29}$, $\frac{25\!\cdots\!90}{41\!\cdots\!89}a^{23}-\frac{11\!\cdots\!75}{41\!\cdots\!89}a^{22}+\frac{39\!\cdots\!46}{41\!\cdots\!89}a^{21}-\frac{79\!\cdots\!47}{41\!\cdots\!89}a^{20}+\frac{97\!\cdots\!23}{41\!\cdots\!89}a^{19}-\frac{16\!\cdots\!58}{41\!\cdots\!89}a^{18}+\frac{23\!\cdots\!20}{41\!\cdots\!89}a^{17}+\frac{17\!\cdots\!26}{41\!\cdots\!89}a^{16}-\frac{71\!\cdots\!94}{41\!\cdots\!89}a^{15}+\frac{18\!\cdots\!68}{41\!\cdots\!89}a^{14}+\frac{13\!\cdots\!15}{41\!\cdots\!89}a^{13}-\frac{16\!\cdots\!15}{41\!\cdots\!89}a^{12}-\frac{12\!\cdots\!60}{41\!\cdots\!89}a^{11}+\frac{39\!\cdots\!22}{14\!\cdots\!41}a^{10}-\frac{13\!\cdots\!74}{41\!\cdots\!89}a^{9}-\frac{20\!\cdots\!70}{41\!\cdots\!89}a^{8}+\frac{23\!\cdots\!17}{41\!\cdots\!89}a^{7}-\frac{67\!\cdots\!33}{41\!\cdots\!89}a^{6}-\frac{11\!\cdots\!99}{41\!\cdots\!89}a^{5}+\frac{11\!\cdots\!48}{41\!\cdots\!89}a^{4}+\frac{19\!\cdots\!74}{41\!\cdots\!89}a^{3}-\frac{20\!\cdots\!35}{41\!\cdots\!89}a^{2}+\frac{28\!\cdots\!72}{41\!\cdots\!89}a+\frac{25\!\cdots\!18}{17\!\cdots\!29}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 535957.6069656424 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{12}\cdot 535957.6069656424 \cdot 2}{4\cdot\sqrt{18075490334784000000000000000000}}\cr\approx \mathstrut & 0.238623834579320 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^24 - 6*x^23 + 23*x^22 - 58*x^21 + 100*x^20 - 160*x^19 + 242*x^18 - 156*x^17 - 228*x^16 + 452*x^15 + 164*x^14 - 1190*x^13 + 1288*x^12 - 326*x^11 - 800*x^10 + 832*x^9 + 514*x^8 - 1302*x^7 + 500*x^6 + 664*x^5 - 155*x^4 - 1418*x^3 + 1951*x^2 - 1112*x + 241)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^24 - 6*x^23 + 23*x^22 - 58*x^21 + 100*x^20 - 160*x^19 + 242*x^18 - 156*x^17 - 228*x^16 + 452*x^15 + 164*x^14 - 1190*x^13 + 1288*x^12 - 326*x^11 - 800*x^10 + 832*x^9 + 514*x^8 - 1302*x^7 + 500*x^6 + 664*x^5 - 155*x^4 - 1418*x^3 + 1951*x^2 - 1112*x + 241, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^24 - 6*x^23 + 23*x^22 - 58*x^21 + 100*x^20 - 160*x^19 + 242*x^18 - 156*x^17 - 228*x^16 + 452*x^15 + 164*x^14 - 1190*x^13 + 1288*x^12 - 326*x^11 - 800*x^10 + 832*x^9 + 514*x^8 - 1302*x^7 + 500*x^6 + 664*x^5 - 155*x^4 - 1418*x^3 + 1951*x^2 - 1112*x + 241);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^24 - 6*x^23 + 23*x^22 - 58*x^21 + 100*x^20 - 160*x^19 + 242*x^18 - 156*x^17 - 228*x^16 + 452*x^15 + 164*x^14 - 1190*x^13 + 1288*x^12 - 326*x^11 - 800*x^10 + 832*x^9 + 514*x^8 - 1302*x^7 + 500*x^6 + 664*x^5 - 155*x^4 - 1418*x^3 + 1951*x^2 - 1112*x + 241);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_3\times C_{12}$ (as 24T65):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 72
The 36 conjugacy class representatives for $S_3\times C_{12}$
Character table for $S_3\times C_{12}$

Intermediate fields

\(\Q(\sqrt{-5}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-1}) \), \(\Q(\zeta_{15})^+\), 4.0.18000.1, \(\Q(i, \sqrt{5})\), 6.0.648000.1, 8.0.324000000.1, 12.0.419904000000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 36 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R ${\href{/padicField/7.12.0.1}{12} }{,}\,{\href{/padicField/7.4.0.1}{4} }^{3}$ ${\href{/padicField/11.6.0.1}{6} }^{4}$ ${\href{/padicField/13.12.0.1}{12} }^{2}$ ${\href{/padicField/17.4.0.1}{4} }^{6}$ ${\href{/padicField/19.2.0.1}{2} }^{12}$ ${\href{/padicField/23.12.0.1}{12} }{,}\,{\href{/padicField/23.4.0.1}{4} }^{3}$ ${\href{/padicField/29.3.0.1}{3} }^{4}{,}\,{\href{/padicField/29.1.0.1}{1} }^{12}$ ${\href{/padicField/31.6.0.1}{6} }^{4}$ ${\href{/padicField/37.4.0.1}{4} }^{6}$ ${\href{/padicField/41.6.0.1}{6} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{6}$ ${\href{/padicField/43.12.0.1}{12} }^{2}$ ${\href{/padicField/47.12.0.1}{12} }{,}\,{\href{/padicField/47.4.0.1}{4} }^{3}$ ${\href{/padicField/53.4.0.1}{4} }^{6}$ ${\href{/padicField/59.6.0.1}{6} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $24$$2$$12$$24$
\(3\) Copy content Toggle raw display 3.12.18.61$x^{12} + 12 x^{11} + 42 x^{10} + 42 x^{9} + 54 x^{8} + 18 x^{7} + 21 x^{6} + 72 x^{5} + 108 x^{4} + 36 x^{3} + 180$$6$$2$$18$$C_{12}$$[2]_{2}^{2}$
3.12.6.1$x^{12} + 18 x^{8} + 81 x^{4} - 486 x^{2} + 1458$$2$$6$$6$$C_{12}$$[\ ]_{2}^{6}$
\(5\) Copy content Toggle raw display 5.12.9.1$x^{12} - 30 x^{8} + 225 x^{4} + 1125$$4$$3$$9$$C_{12}$$[\ ]_{4}^{3}$
5.12.9.1$x^{12} - 30 x^{8} + 225 x^{4} + 1125$$4$$3$$9$$C_{12}$$[\ ]_{4}^{3}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
* 1.4.2t1.a.a$1$ $ 2^{2}$ \(\Q(\sqrt{-1}) \) $C_2$ (as 2T1) $1$ $-1$
* 1.20.2t1.a.a$1$ $ 2^{2} \cdot 5 $ \(\Q(\sqrt{-5}) \) $C_2$ (as 2T1) $1$ $-1$
* 1.5.2t1.a.a$1$ $ 5 $ \(\Q(\sqrt{5}) \) $C_2$ (as 2T1) $1$ $1$
1.9.3t1.a.a$1$ $ 3^{2}$ \(\Q(\zeta_{9})^+\) $C_3$ (as 3T1) $0$ $1$
1.45.6t1.a.a$1$ $ 3^{2} \cdot 5 $ 6.6.820125.1 $C_6$ (as 6T1) $0$ $1$
1.180.6t1.b.a$1$ $ 2^{2} \cdot 3^{2} \cdot 5 $ 6.0.52488000.1 $C_6$ (as 6T1) $0$ $-1$
1.180.6t1.b.b$1$ $ 2^{2} \cdot 3^{2} \cdot 5 $ 6.0.52488000.1 $C_6$ (as 6T1) $0$ $-1$
1.45.6t1.a.b$1$ $ 3^{2} \cdot 5 $ 6.6.820125.1 $C_6$ (as 6T1) $0$ $1$
1.36.6t1.b.a$1$ $ 2^{2} \cdot 3^{2}$ 6.0.419904.1 $C_6$ (as 6T1) $0$ $-1$
1.9.3t1.a.b$1$ $ 3^{2}$ \(\Q(\zeta_{9})^+\) $C_3$ (as 3T1) $0$ $1$
1.36.6t1.b.b$1$ $ 2^{2} \cdot 3^{2}$ 6.0.419904.1 $C_6$ (as 6T1) $0$ $-1$
* 1.15.4t1.a.a$1$ $ 3 \cdot 5 $ \(\Q(\zeta_{15})^+\) $C_4$ (as 4T1) $0$ $1$
* 1.60.4t1.a.a$1$ $ 2^{2} \cdot 3 \cdot 5 $ 4.0.18000.1 $C_4$ (as 4T1) $0$ $-1$
* 1.60.4t1.a.b$1$ $ 2^{2} \cdot 3 \cdot 5 $ 4.0.18000.1 $C_4$ (as 4T1) $0$ $-1$
* 1.15.4t1.a.b$1$ $ 3 \cdot 5 $ \(\Q(\zeta_{15})^+\) $C_4$ (as 4T1) $0$ $1$
1.180.12t1.a.a$1$ $ 2^{2} \cdot 3^{2} \cdot 5 $ 12.0.3099363912000000000.1 $C_{12}$ (as 12T1) $0$ $-1$
1.45.12t1.b.a$1$ $ 3^{2} \cdot 5 $ \(\Q(\zeta_{45})^+\) $C_{12}$ (as 12T1) $0$ $1$
1.45.12t1.b.b$1$ $ 3^{2} \cdot 5 $ \(\Q(\zeta_{45})^+\) $C_{12}$ (as 12T1) $0$ $1$
1.180.12t1.a.b$1$ $ 2^{2} \cdot 3^{2} \cdot 5 $ 12.0.3099363912000000000.1 $C_{12}$ (as 12T1) $0$ $-1$
1.180.12t1.a.c$1$ $ 2^{2} \cdot 3^{2} \cdot 5 $ 12.0.3099363912000000000.1 $C_{12}$ (as 12T1) $0$ $-1$
1.45.12t1.b.c$1$ $ 3^{2} \cdot 5 $ \(\Q(\zeta_{45})^+\) $C_{12}$ (as 12T1) $0$ $1$
1.180.12t1.a.d$1$ $ 2^{2} \cdot 3^{2} \cdot 5 $ 12.0.3099363912000000000.1 $C_{12}$ (as 12T1) $0$ $-1$
1.45.12t1.b.d$1$ $ 3^{2} \cdot 5 $ \(\Q(\zeta_{45})^+\) $C_{12}$ (as 12T1) $0$ $1$
2.1620.3t2.b.a$2$ $ 2^{2} \cdot 3^{4} \cdot 5 $ 3.1.1620.1 $S_3$ (as 3T2) $1$ $0$
2.1620.6t3.g.a$2$ $ 2^{2} \cdot 3^{4} \cdot 5 $ 6.2.13122000.3 $D_{6}$ (as 6T3) $1$ $0$
* 2.180.12t18.a.a$2$ $ 2^{2} \cdot 3^{2} \cdot 5 $ 12.0.419904000000.1 $C_6\times S_3$ (as 12T18) $0$ $0$
* 2.180.12t18.a.b$2$ $ 2^{2} \cdot 3^{2} \cdot 5 $ 12.0.419904000000.1 $C_6\times S_3$ (as 12T18) $0$ $0$
* 2.180.6t5.b.a$2$ $ 2^{2} \cdot 3^{2} \cdot 5 $ 6.0.648000.1 $S_3\times C_3$ (as 6T5) $0$ $0$
* 2.180.6t5.b.b$2$ $ 2^{2} \cdot 3^{2} \cdot 5 $ 6.0.648000.1 $S_3\times C_3$ (as 6T5) $0$ $0$
2.8100.12t11.a.a$2$ $ 2^{2} \cdot 3^{4} \cdot 5^{2}$ 12.4.193710244500000000.1 $S_3 \times C_4$ (as 12T11) $0$ $0$
2.8100.12t11.a.b$2$ $ 2^{2} \cdot 3^{4} \cdot 5^{2}$ 12.4.193710244500000000.1 $S_3 \times C_4$ (as 12T11) $0$ $0$
* 2.2700.24t65.a.a$2$ $ 2^{2} \cdot 3^{3} \cdot 5^{2}$ 24.0.18075490334784000000000000000000.1 $S_3\times C_{12}$ (as 24T65) $0$ $0$
* 2.2700.24t65.a.b$2$ $ 2^{2} \cdot 3^{3} \cdot 5^{2}$ 24.0.18075490334784000000000000000000.1 $S_3\times C_{12}$ (as 24T65) $0$ $0$
* 2.2700.24t65.a.c$2$ $ 2^{2} \cdot 3^{3} \cdot 5^{2}$ 24.0.18075490334784000000000000000000.1 $S_3\times C_{12}$ (as 24T65) $0$ $0$
* 2.2700.24t65.a.d$2$ $ 2^{2} \cdot 3^{3} \cdot 5^{2}$ 24.0.18075490334784000000000000000000.1 $S_3\times C_{12}$ (as 24T65) $0$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.