Properties

Label 46.2.219...197.1
Degree 4646
Signature [2,22][2, 22]
Discriminant 2.199×10962.199\times 10^{96}
Root discriminant 124.28124.28
Ramified primes see page
Class number not computed
Class group not computed
Galois group S46S_{46} (as 46T56)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^46 - 3*x - 2)
 
Copy content gp:K = bnfinit(y^46 - 3*y - 2, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^46 - 3*x - 2);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^46 - 3*x - 2)
 

x463x2 x^{46} - 3x - 2 Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  4646
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  [2,22][2, 22]
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   219 ⁣ ⁣197219\!\cdots\!197 =747469738978317089161961218481546540173305861139859640151 ⁣ ⁣11\medspace = 7\cdot 47\cdot 4697389783\cdot 17089161961\cdot 2184815465401\cdot 733058611398596401\cdot 51\!\cdots\!11 Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  124.28124.28
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  71/2471/246973897831/2170891619611/221848154654011/27330586113985964011/2519773730606529046868635243141333598764480111/21.482758850918259e+487^{1/2}47^{1/2}4697389783^{1/2}17089161961^{1/2}2184815465401^{1/2}733058611398596401^{1/2}51977373060652904686863524314133359876448011^{1/2}\approx 1.482758850918259e+48
Ramified primes:   77, 4747, 46973897834697389783, 1708916196117089161961, 21848154654012184815465401, 733058611398596401733058611398596401, 51977 ⁣ ⁣4801151977\!\cdots\!48011 Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  Q(21985 ⁣ ⁣22197\Q(\sqrt{21985\!\cdots\!22197})
Aut(K/Q)\Aut(K/\Q):   C1C_1
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over Q\Q.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator aa)

11, aa, a2a^{2}, a3a^{3}, a4a^{4}, a5a^{5}, a6a^{6}, a7a^{7}, a8a^{8}, a9a^{9}, a10a^{10}, a11a^{11}, a12a^{12}, a13a^{13}, a14a^{14}, a15a^{15}, a16a^{16}, a17a^{17}, a18a^{18}, a19a^{19}, a20a^{20}, a21a^{21}, a22a^{22}, a23a^{23}, a24a^{24}, a25a^{25}, a26a^{26}, a27a^{27}, a28a^{28}, a29a^{29}, a30a^{30}, a31a^{31}, a32a^{32}, a33a^{33}, a34a^{34}, a35a^{35}, a36a^{36}, a37a^{37}, a38a^{38}, a39a^{39}, a40a^{40}, a41a^{41}, a42a^{42}, a43a^{43}, a44a^{44}, a45a^{45} Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Yes
Index:  11
Inessential primes:  None

Class group and class number

Ideal class group:  not computed
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  not computed
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  2323
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   1 -1  (order 22) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:  not computed
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

lims1(s1)ζK(s)=(2r1(2π)r2RhwD=(22(2π)22Rh22198573809976436140308455840261067288915834777310563784825797656919642572984790479136920131622197( some values not computed  \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{2}\cdot(2\pi)^{22}\cdot R \cdot h}{2\cdot\sqrt{2198573809976436140308455840261067288915834777310563784825797656919642572984790479136920131622197}}\cr\mathstrut & \text{ some values not computed } \end{aligned}

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^46 - 3*x - 2) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^46 - 3*x - 2, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^46 - 3*x - 2); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^46 - 3*x - 2); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

S46S_{46} (as 46T56):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 5502622159812088949850305428800254892961651752960000000000
The 105558 conjugacy class representatives for S46S_{46} are not computed
Character table for S46S_{46}

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and Q\Q.
Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Frobenius cycle types

pp 22 33 55 77 1111 1313 1717 1919 2323 2929 3131 3737 4141 4343 4747 5353 5959
Cycle type 122,6,43,2,12{\href{/padicField/2.12.0.1}{12} }^{2}{,}\,{\href{/padicField/2.6.0.1}{6} }{,}\,{\href{/padicField/2.4.0.1}{4} }^{3}{,}\,{\href{/padicField/2.2.0.1}{2} }{,}\,{\href{/padicField/2.1.0.1}{1} }^{2} 222,222^{2}{,}\,{\href{/padicField/3.2.0.1}{2} } 22,18,622{,}\,18{,}\,{\href{/padicField/5.6.0.1}{6} } R 17,15,12,217{,}\,15{,}\,{\href{/padicField/11.12.0.1}{12} }{,}\,{\href{/padicField/11.2.0.1}{2} } 34,1234{,}\,{\href{/padicField/13.12.0.1}{12} } 22,15,8,122{,}\,15{,}\,{\href{/padicField/17.8.0.1}{8} }{,}\,{\href{/padicField/17.1.0.1}{1} } 32,7,4,332{,}\,{\href{/padicField/19.7.0.1}{7} }{,}\,{\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.3.0.1}{3} } 26,12,826{,}\,{\href{/padicField/23.12.0.1}{12} }{,}\,{\href{/padicField/23.8.0.1}{8} } 41,2,1341{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{3} 35,10,135{,}\,{\href{/padicField/31.10.0.1}{10} }{,}\,{\href{/padicField/31.1.0.1}{1} } 40,5,140{,}\,{\href{/padicField/37.5.0.1}{5} }{,}\,{\href{/padicField/37.1.0.1}{1} } 26,12,826{,}\,{\href{/padicField/41.12.0.1}{12} }{,}\,{\href{/padicField/41.8.0.1}{8} } 13,12,11,32,2,12{\href{/padicField/43.13.0.1}{13} }{,}\,{\href{/padicField/43.12.0.1}{12} }{,}\,{\href{/padicField/43.11.0.1}{11} }{,}\,{\href{/padicField/43.3.0.1}{3} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{2} R 45,145{,}\,{\href{/padicField/53.1.0.1}{1} } 43,2,143{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

ppLabelPolynomial ee ff cc Galois group Slope content
77 Copy content Toggle raw display 7.1.2.1a1.1x2+7x^{2} + 7221111C2C_2[ ]2[\ ]_{2}
7.2.1.0a1.1x2+6x+3x^{2} + 6 x + 3112200C2C_2[ ]2[\ ]^{2}
Deg 424211424200C42C_{42}[ ]42[\ ]^{42}
4747 Copy content Toggle raw display 47.1.2.1a1.1x2+47x^{2} + 47221111C2C_2[ ]2[\ ]_{2}
47.2.1.0a1.1x2+45x+5x^{2} + 45 x + 5112200C2C_2[ ]2[\ ]^{2}
47.4.1.0a1.1x4+8x2+40x+5x^{4} + 8 x^{2} + 40 x + 5114400C4C_4[ ]4[\ ]^{4}
47.4.1.0a1.1x4+8x2+40x+5x^{4} + 8 x^{2} + 40 x + 5114400C4C_4[ ]4[\ ]^{4}
47.4.1.0a1.1x4+8x2+40x+5x^{4} + 8 x^{2} + 40 x + 5114400C4C_4[ ]4[\ ]^{4}
47.6.1.0a1.1x6+2x4+35x3+9x2+41x+5x^{6} + 2 x^{4} + 35 x^{3} + 9 x^{2} + 41 x + 5116600C6C_6[ ]6[\ ]^{6}
47.12.1.0a1.1x12+46x7+40x6+35x5+12x4+46x3+14x2+9x+5x^{12} + 46 x^{7} + 40 x^{6} + 35 x^{5} + 12 x^{4} + 46 x^{3} + 14 x^{2} + 9 x + 511121200C12C_{12}[ ]12[\ ]^{12}
47.12.1.0a1.1x12+46x7+40x6+35x5+12x4+46x3+14x2+9x+5x^{12} + 46 x^{7} + 40 x^{6} + 35 x^{5} + 12 x^{4} + 46 x^{3} + 14 x^{2} + 9 x + 511121200C12C_{12}[ ]12[\ ]^{12}
46973897834697389783 Copy content Toggle raw display Q4697389783\Q_{4697389783}xx111100Trivial[ ][\ ]
Deg 22221111C2C_2[ ]2[\ ]_{2}
Deg 121211121200C12C_{12}[ ]12[\ ]^{12}
Deg 313111313100C31C_{31}[ ]31[\ ]^{31}
1708916196117089161961 Copy content Toggle raw display Deg 22221111C2C_2[ ]2[\ ]_{2}
Deg 55115500C5C_5[ ]5[\ ]^{5}
Deg 111111111100C11C_{11}[ ]11[\ ]^{11}
Deg 121211121200C12C_{12}[ ]12[\ ]^{12}
Deg 161611161600C16C_{16}[ ]16[\ ]^{16}
21848154654012184815465401 Copy content Toggle raw display Q2184815465401\Q_{2184815465401}xx111100Trivial[ ][\ ]
Q2184815465401\Q_{2184815465401}xx111100Trivial[ ][\ ]
Deg 22221111C2C_2[ ]2[\ ]_{2}
Deg 33113300C3C_3[ ]3[\ ]^{3}
Deg 77117700C7C_7[ ]7[\ ]^{7}
Deg 77117700C7C_7[ ]7[\ ]^{7}
Deg 252511252500C25C_{25}[ ]25[\ ]^{25}
733058611398596401733058611398596401 Copy content Toggle raw display Q733058611398596401\Q_{733058611398596401}xx111100Trivial[ ][\ ]
Deg 22112200C2C_2[ ]2[\ ]^{2}
Deg 22221111C2C_2[ ]2[\ ]_{2}
Deg 414111414100C41C_{41}[ ]41[\ ]^{41}
519 ⁣ ⁣011519\!\cdots\!011 Copy content Toggle raw display Q51 ⁣ ⁣11\Q_{51\!\cdots\!11}xx111100Trivial[ ][\ ]
Deg 22221111C2C_2[ ]2[\ ]_{2}
Deg 88118800C8C_8[ ]8[\ ]^{8}
Deg 131311131300C13C_{13}[ ]13[\ ]^{13}
Deg 22221122220022T1[ ]22[\ ]^{22}

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)