Normalized defining polynomial
Invariants
Degree: |
| ||
Signature: |
| ||
Discriminant: |
|
| |
Root discriminant: |
| ||
Galois root discriminant: | |||
Ramified primes: |
, , , , , ,
|
| |
Discriminant root field: | ) | ||
: |
| ||
This field is not Galois over . | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator )
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Monogenic: | Yes | |
Index: | ||
Inessential primes: | None |
Class group and class number
Ideal class group: | not computed |
| |
Narrow class group: | not computed |
|
Unit group
Rank: |
| ||
Torsion generator: |
(order )
|
| |
Fundamental units: | not computed |
| |
Regulator: | not computed |
|
Class number formula
Galois group
(as 46T56):
A non-solvable group of order 5502622159812088949850305428800254892961651752960000000000 |
The 105558 conjugacy class representatives for are not computed |
Character table for |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and . |
Frobenius cycle types
Cycle type | R | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
Label | Polynomial | Galois group | Slope content | ||||
---|---|---|---|---|---|---|---|
| 7.1.2.1a1.1 | ||||||
7.2.1.0a1.1 | |||||||
Deg | |||||||
| 47.1.2.1a1.1 | ||||||
47.2.1.0a1.1 | |||||||
47.4.1.0a1.1 | |||||||
47.4.1.0a1.1 | |||||||
47.4.1.0a1.1 | |||||||
47.6.1.0a1.1 | |||||||
47.12.1.0a1.1 | |||||||
47.12.1.0a1.1 | |||||||
| Trivial | ||||||
Deg | |||||||
Deg | |||||||
Deg | |||||||
| Deg | ||||||
Deg | |||||||
Deg | |||||||
Deg | |||||||
Deg | |||||||
| Trivial | ||||||
Trivial | |||||||
Deg | |||||||
Deg | |||||||
Deg | |||||||
Deg | |||||||
Deg | |||||||
| Trivial | ||||||
Deg | |||||||
Deg | |||||||
Deg | |||||||
| Trivial | ||||||
Deg | |||||||
Deg | |||||||
Deg | |||||||
Deg | 22T1 |