Properties

Label 3.3.ad_ad_s
Base field F3\F_{3}
Dimension 33
pp-rank 00
Ordinary no
Supersingular yes
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian no

Related objects

Downloads

Learn more

Invariants

Base field:  F3\F_{3}
Dimension:  33
L-polynomial:  (13x+3x2)(13x2)2( 1 - 3 x + 3 x^{2} )( 1 - 3 x^{2} )^{2}
  13x3x2+18x39x427x5+27x61 - 3 x - 3 x^{2} + 18 x^{3} - 9 x^{4} - 27 x^{5} + 27 x^{6}
Frobenius angles:  00, 00, ±0.166666666667\pm0.166666666667, 11, 11
Angle rank:  00 (numerical)
Jacobians:  00

This isogeny class is not simple, primitive, not ordinary, and supersingular. It is principally polarizable.

Newton polygon

This isogeny class is supersingular.

pp-rank:  00
Slopes:  [1/2,1/2,1/2,1/2,1/2,1/2][1/2, 1/2, 1/2, 1/2, 1/2, 1/2]

Point counts

Point counts of the abelian variety

rr 11 22 33 44 55
A(Fqr)A(\F_{q^r}) 44 112112 1892818928 372736372736 1587084415870844

Point counts of the (virtual) curve

rr 11 22 33 44 55 66 77 88 99 1010
C(Fqr)C(\F_{q^r}) 11 5-5 2828 5555 271271 676676 22692269 63196319 1968419684 5783557835

Jacobians and polarizations

This isogeny class is principally polarizable, but does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over F312\F_{3^{12}}.

Endomorphism algebra over F3\F_{3}
The isogeny class factors as 1.3.ad ×\times 2.3.a_ag and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over F3\overline{\F}_{3}
The base change of AA to F312\F_{3^{12}} is 1.531441.acec 3 and its endomorphism algebra is M3(B)\mathrm{M}_{3}(B), where BB is the quaternion algebra over Q\Q ramified at 33 and \infty.
Remainder of endomorphism lattice by field

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
3.3.d_ad_as223.9.ap_dv_aoo
3.3.ad_g_aj33(not in LMFDB)
3.3.a_ad_a33(not in LMFDB)
3.3.a_g_a33(not in LMFDB)
3.3.d_ad_as33(not in LMFDB)
3.3.d_g_j33(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.3.d_ad_as223.9.ap_dv_aoo
3.3.ad_g_aj33(not in LMFDB)
3.3.a_ad_a33(not in LMFDB)
3.3.a_g_a33(not in LMFDB)
3.3.d_ad_as33(not in LMFDB)
3.3.d_g_j33(not in LMFDB)
3.3.ad_j_as44(not in LMFDB)
3.3.d_j_s44(not in LMFDB)
3.3.ad_g_aj66(not in LMFDB)
3.3.a_ad_a66(not in LMFDB)
3.3.a_g_a66(not in LMFDB)
3.3.d_g_j66(not in LMFDB)
3.3.ad_d_a88(not in LMFDB)
3.3.d_d_a88(not in LMFDB)
3.3.aj_bk_add1212(not in LMFDB)
3.3.ag_s_abk1212(not in LMFDB)
3.3.ad_a_j1212(not in LMFDB)
3.3.ad_g_aj1212(not in LMFDB)
3.3.ad_j_as1212(not in LMFDB)
3.3.a_ad_a1212(not in LMFDB)
3.3.a_a_a1212(not in LMFDB)
3.3.a_g_a1212(not in LMFDB)
3.3.a_j_a1212(not in LMFDB)
3.3.d_ad_as1212(not in LMFDB)
3.3.d_a_aj1212(not in LMFDB)
3.3.d_g_j1212(not in LMFDB)
3.3.d_j_s1212(not in LMFDB)
3.3.g_s_bk1212(not in LMFDB)
3.3.j_bk_dd1212(not in LMFDB)
3.3.ad_d_a2424(not in LMFDB)
3.3.a_d_a2424(not in LMFDB)
3.3.d_d_a2424(not in LMFDB)
3.3.a_a_aj3636(not in LMFDB)
3.3.a_a_j3636(not in LMFDB)