show · character.dirichlet.kronecker_symbol all knowls · up · search:

The Kronecker symbol (an)\displaystyle\left(\frac{a}{n}\right) is the multiplicative extension of the Jacobi symbol (am)\displaystyle\left(\frac{a}{m}\right), which is defined on all positive odd integers mm, to all integers nZn\in\mathbb{Z} as follows.

We set (a1)={1if a01if a<0;\displaystyle\left(\frac{a}{-1}\right) = \left\{ \begin{array}{cl} 1 & \text{if } a\geq 0\\ -1 & \text{if } a < 0; \end{array} \right.

(a2)={0if a0mod21if a±1mod81if a±3mod8;\displaystyle\left(\frac{a}{2}\right) = \left\{ \begin{array}{cl} 0 & \text{if } a\equiv 0 \bmod 2\\ 1 & \text{if } a\equiv \pm 1 \bmod 8\\ -1 & \text{if } a \equiv \pm 3 \bmod 8; \end{array} \right. and (a0)={1if a=±10otherwise .\displaystyle\left(\frac{a}{0}\right) = \left\{ \begin{array}{cl} 1 & \text{if } a= \pm 1\\ 0 & \text{otherwise }. \end{array} \right.

Then for each nonzero integer n=sgn(n)p1e1p2e2prern = \sgn(n) p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} the Kronecker symbol is defined as the product of symbols above and the Legendre symbols for odd primes

(an)=(asgn(n))(ap1)e1(ap2)e2(apr)er.\displaystyle\left(\frac{a}{n}\right) = \displaystyle\left(\frac{a}{\sgn(n)}\right) \displaystyle\left(\frac{a}{p_1}\right)^{e_1} \displaystyle\left(\frac{a}{p_2}\right)^{e_2}\cdots \displaystyle\left(\frac{a}{p_r}\right)^{e_r}.

A Dirichlet character can be written as a Kronecker symbol (a)\displaystyle\left(\frac{a}{\cdot}\right) if and only if it is real.

Authors:
Knowl status:
  • Review status: reviewed
  • Last edited by Pascal Molin on 2019-04-30 12:12:27
Referred to by:
History: (expand/hide all) Differences (show/hide)