If is a finite extension of and a finite extension of . Then and , the ring of integers of and are discrete valuation domains, so they have unique maximal ideals and which are principal. If , the element is a uniformizer for .
The principal ideal for some positive integer . The integer is the ramification index for over . The ramification index of is then the ramification index for over .
If , then we say that the extension is unramified, and if , then we say that the extension is totally ramified.
Authors:
Knowl status:
- Review status: reviewed
- Last edited by John Cremona on 2018-05-30 08:52:33
Referred to by:
History:
(expand/hide all)
- lf.defining_polynomial
- lf.discriminant_exponent
- lf.eisenstein_diagram
- lf.eisenstein_form
- lf.eisenstein_polynomial
- lf.family_invariants
- lf.family_label
- lf.family_polynomial
- lf.field_label
- lf.heights
- lf.herbrand_input
- lf.herbrand_invariant
- lf.indices_of_inseparability
- lf.invariants
- lf.log
- lf.means
- lf.packet
- lf.ramification_polygon
- lf.rams
- lf.residual_polynomials
- lf.unramified_degree
- lf.unramified_subfield
- lf.unramified_totally_ramified_tower
- lmfdb/local_fields/main.py (line 451)
- lmfdb/local_fields/main.py (lines 603-605)
- lmfdb/local_fields/main.py (line 1403)
- lmfdb/local_fields/main.py (line 1568)
- lmfdb/local_fields/main.py (line 1592)
- lmfdb/local_fields/main.py (line 1616)
- lmfdb/local_fields/main.py (line 1628)
- lmfdb/local_fields/main.py (line 1773)
- lmfdb/local_fields/templates/lf-family.html (line 18)
- lmfdb/local_fields/templates/lf-show-field.html (line 15)
- lmfdb/number_fields/templates/nf-show-field.html (line 279)
- 2024-11-12 00:44:50 by David Roe
- 2024-11-12 00:39:06 by David Roe
- 2024-11-12 00:22:37 by David Roe
- 2024-11-12 00:17:04 by David Roe
- 2024-11-10 14:08:36 by Kevin Keating
- 2024-11-10 14:07:13 by Kevin Keating
- 2024-11-10 14:03:51 by Kevin Keating
- 2024-11-10 13:58:39 by Kevin Keating
- 2018-05-30 08:52:33 by John Cremona (Reviewed)