Defining polynomial
\(x^{14} + 51\)
|
Invariants
Base field: | $\Q_{17}$ |
Degree $d$: | $14$ |
Ramification index $e$: | $14$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $13$ |
Discriminant root field: | $\Q_{17}(\sqrt{17\cdot 3})$ |
Root number: | $1$ |
$\Aut(K/\Q_{17})$: | $C_2$ |
This field is not Galois over $\Q_{17}.$ | |
Visible Artin slopes: | $[\ ]$ |
Visible Swan slopes: | $[]$ |
Means: | $\langle\ \rangle$ |
Rams: | $(\ )$ |
Jump set: | undefined |
Roots of unity: | $16 = (17 - 1)$ |
Intermediate fields
$\Q_{17}(\sqrt{17\cdot 3})$, 17.1.7.6a1.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{17}$ |
Relative Eisenstein polynomial: |
\( x^{14} + 51 \)
|
Ramification polygon
Residual polynomials: | $z^{13} + 14 z^{12} + 6 z^{11} + 7 z^{10} + 15 z^{9} + 13 z^{8} + 11 z^{7} + 15 z^{6} + 11 z^{5} + 13 z^{4} + 15 z^{3} + 7 z^{2} + 6 z + 14$ |
Associated inertia: | $6$ |
Indices of inseparability: | $[0]$ |
Invariants of the Galois closure
Galois degree: | $84$ |
Galois group: | $C_2\times F_7$ (as 14T7) |
Inertia group: | $C_{14}$ (as 14T1) |
Wild inertia group: | $C_1$ |
Galois unramified degree: | $6$ |
Galois tame degree: | $14$ |
Galois Artin slopes: | $[\ ]$ |
Galois Swan slopes: | $[]$ |
Galois mean slope: | $0.9285714285714286$ |
Galois splitting model: | not computed |