Properties

Label 17.1.14.13a1.2
Base \(\Q_{17}\)
Degree \(14\)
e \(14\)
f \(1\)
c \(13\)
Galois group $F_7 \times C_2$ (as 14T7)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{14} + 51\) Copy content Toggle raw display

Invariants

Base field: $\Q_{17}$
Degree $d$: $14$
Ramification index $e$: $14$
Residue field degree $f$: $1$
Discriminant exponent $c$: $13$
Discriminant root field: $\Q_{17}(\sqrt{17\cdot 3})$
Root number: $1$
$\Aut(K/\Q_{17})$: $C_2$
This field is not Galois over $\Q_{17}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$16 = (17 - 1)$

Intermediate fields

$\Q_{17}(\sqrt{17\cdot 3})$, 17.1.7.6a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{17}$
Relative Eisenstein polynomial: \( x^{14} + 51 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{13} + 14 z^{12} + 6 z^{11} + 7 z^{10} + 15 z^{9} + 13 z^{8} + 11 z^{7} + 15 z^{6} + 11 z^{5} + 13 z^{4} + 15 z^{3} + 7 z^{2} + 6 z + 14$
Associated inertia:$6$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $84$
Galois group: $C_2\times F_7$ (as 14T7)
Inertia group: $C_{14}$ (as 14T1)
Wild inertia group: $C_1$
Galois unramified degree: $6$
Galois tame degree: $14$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[]$
Galois mean slope: $0.9285714285714286$
Galois splitting model:not computed