Properties

Label 2.7.2.14a3.2
Base Q2\Q_{2}
Degree 1414
e 22
f 77
c 1414
Galois group C2C7C_2 \wr C_7 (as 14T29)

Related objects

Downloads

Learn more

Defining polynomial

(x7+x+1)2+(2x+2)(x7+x+1)+4x2+2( x^{7} + x + 1 )^{2} + \left(2 x + 2\right) ( x^{7} + x + 1 ) + 4 x^{2} + 2 Copy content Toggle raw display

Invariants

Base field: Q2\Q_{2}
Degree dd: 1414
Ramification index ee: 22
Residue field degree ff: 77
Discriminant exponent cc: 1414
Discriminant root field: Q2(5)\Q_{2}(\sqrt{5})
Root number: 1-1
Aut(K/Q2)\Aut(K/\Q_{2}): C2C_2
This field is not Galois over Q2.\Q_{2}.
Visible Artin slopes:[2][2]
Visible Swan slopes:[1][1]
Means:12\langle\frac{1}{2}\rangle
Rams:(1)(1)
Jump set:[1,3][1, 3]
Roots of unity:254=(271)2254 = (2^{ 7 } - 1) \cdot 2

Intermediate fields

2.7.1.0a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:2.7.1.0a1.1 Q2(t)\cong \Q_{2}(t) where tt is a root of x7+x+1 x^{7} + x + 1 Copy content Toggle raw display
Relative Eisenstein polynomial: x2+(2t4+2t2+2t+2)x+4t+2 x^{2} + \left(2 t^{4} + 2 t^{2} + 2 t + 2\right) x + 4 t + 2  Q2(t)[x]\ \in\Q_{2}(t)[x] Copy content Toggle raw display

Ramification polygon

Residual polynomials:z+t6z + t^{6}
Associated inertia:11
Indices of inseparability:[1,0][1, 0]

Invariants of the Galois closure

Galois degree: 896896
Galois group: C2C7C_2\wr C_7 (as 14T29)
Inertia group: Intransitive group isomorphic to C26C_2^6
Wild inertia group: C26C_2^6
Galois unramified degree: 1414
Galois tame degree: 11
Galois Artin slopes: [2,2,2,2,2,2][2, 2, 2, 2, 2, 2]
Galois Swan slopes: [1,1,1,1,1,1][1,1,1,1,1,1]
Galois mean slope: 1.968751.96875
Galois splitting model: x14+21x12252x105670x81134x6+40824x4+40824x2+2187x^{14} + 21 x^{12} - 252 x^{10} - 5670 x^{8} - 1134 x^{6} + 40824 x^{4} + 40824 x^{2} + 2187 Copy content Toggle raw display