Properties

Label 3.2.6.12a1.1
Base \(\Q_{3}\)
Degree \(12\)
e \(6\)
f \(2\)
c \(12\)
Galois group $C_3^4:\OD_{16}$ (as 12T215)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + 2 x + 2 )^{6} + 6 ( x^{2} + 2 x + 2 ) + 3 x$ Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $12$
Ramification index $e$: $6$
Residue field degree $f$: $2$
Discriminant exponent $c$: $12$
Discriminant root field: $\Q_{3}$
Root number: $1$
$\Aut(K/\Q_{3})$: $C_1$
This field is not Galois over $\Q_{3}.$
Visible Artin slopes:$[\frac{5}{4}]$
Visible Swan slopes:$[\frac{1}{4}]$
Means:$\langle\frac{1}{6}\rangle$
Rams:$(\frac{1}{2})$
Jump set:undefined
Roots of unity:$8 = (3^{ 2 } - 1)$

Intermediate fields

$\Q_{3}(\sqrt{2})$, 3.2.2.2a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{3}(\sqrt{2})$ $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{2} + 2 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{6} + 3 t x + 3 t \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{3} + 2$,$2 z + (t + 1)$
Associated inertia:$1$,$1$
Indices of inseparability:$[1, 0]$

Invariants of the Galois closure

Galois degree: $1296$
Galois group: $C_3^4:\OD_{16}$ (as 12T215)
Inertia group: Intransitive group isomorphic to $C_3^4:C_4$
Wild inertia group: $C_3^4$
Galois unramified degree: $4$
Galois tame degree: $4$
Galois Artin slopes: $[\frac{5}{4}, \frac{5}{4}, \frac{5}{4}, \frac{5}{4}]$
Galois Swan slopes: $[\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4}]$
Galois mean slope: $1.2438271604938271$
Galois splitting model: $x^{12} - 6 x^{11} + 12 x^{10} - 3 x^{9} - 15 x^{8} + 18 x^{7} - 13 x^{6} + 6 x^{5} + 21 x^{4} - 45 x^{3} + 15 x^{2} + 15 x - 5$ Copy content Toggle raw display