Properties

Label 3.12.14.11
Base \(\Q_{3}\)
Degree \(12\)
e \(6\)
f \(2\)
c \(14\)
Galois group $D_6$ (as 12T3)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 12 x^{11} + 72 x^{10} + 280 x^{9} + 792 x^{8} + 1728 x^{7} + 2918 x^{6} + 3684 x^{5} + 3156 x^{4} + 1376 x^{3} - 36 x^{2} - 168 x + 25\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $12$
Ramification exponent $e$: $6$
Residue field degree $f$: $2$
Discriminant exponent $c$: $14$
Discriminant root field: $\Q_{3}$
Root number: $1$
$\card{ \Gal(K/\Q_{ 3 }) }$: $12$
This field is Galois over $\Q_{3}.$
Visible slopes:$[3/2]$

Intermediate fields

$\Q_{3}(\sqrt{2})$, $\Q_{3}(\sqrt{3})$, $\Q_{3}(\sqrt{3\cdot 2})$, 3.3.3.1 x3, 3.4.2.1, 3.6.6.4 x3, 3.6.7.1, 3.6.7.5 x3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{3}(\sqrt{2})$ $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{2} + 2 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{6} + 6 x^{2} + 3 \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$2z^{2} + 2$,$z^{3} + 2$
Associated inertia:$1$,$1$
Indices of inseparability:$[2, 0]$

Invariants of the Galois closure

Galois group:$D_6$ (as 12T3)
Inertia group:Intransitive group isomorphic to $S_3$
Wild inertia group:$C_3$
Unramified degree:$2$
Tame degree:$2$
Wild slopes:$[3/2]$
Galois mean slope:$7/6$
Galois splitting model:$x^{12} - 6 x^{11} + 21 x^{10} - 50 x^{9} + 93 x^{8} - 138 x^{7} + 164 x^{6} - 153 x^{5} + 111 x^{4} - 61 x^{3} + 24 x^{2} - 6 x + 1$