Properties

Label 3.15.15.1
Base \(\Q_{3}\)
Degree \(15\)
e \(3\)
f \(5\)
c \(15\)
Galois group $C_7^3:C_6$ (as 15T44)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{15} - 48 x^{14} + 906 x^{13} - 7365 x^{12} + 13968 x^{11} + 95301 x^{10} + 55413 x^{9} - 59940 x^{8} + 224694 x^{7} + 597321 x^{6} + 326997 x^{5} - 91206 x^{4} - 61803 x^{3} + 25758 x^{2} - 3888 x + 243\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $15$
Ramification exponent $e$: $3$
Residue field degree $f$: $5$
Discriminant exponent $c$: $15$
Discriminant root field: $\Q_{3}(\sqrt{3})$
Root number: $-i$
$\card{ \Aut(K/\Q_{ 3 }) }$: $1$
This field is not Galois over $\Q_{3}.$
Visible slopes:$[3/2]$

Intermediate fields

3.5.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:3.5.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{5} + 2 x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{3} + \left(6 t^{4} + 3 t\right) x^{2} + \left(6 t^{4} + 6 t^{2} + 3 t\right) x + 3 \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + t^{4} + t^{2} + 2t$
Associated inertia:$1$
Indices of inseparability:$[1, 0]$

Invariants of the Galois closure

Galois group:$C_7^3:C_6$ (as 15T44)
Inertia group:Intransitive group isomorphic to $C_3^4:S_3$
Wild inertia group:$C_3^5$
Unramified degree:$5$
Tame degree:$2$
Wild slopes:$[3/2, 3/2, 3/2, 3/2, 3/2]$
Galois mean slope:$727/486$
Galois splitting model: $x^{15} + 534 x^{13} - 11036 x^{12} - 356445 x^{11} - 3303057 x^{10} + 4340708 x^{9} + 1522733040 x^{8} + 25801865400 x^{7} - 10442000828 x^{6} - 3289261984425 x^{5} - 11731418737698 x^{4} + 218971550450338 x^{3} + 584232219851625 x^{2} - 9566281188519309 x + 21061402607852749$ Copy content Toggle raw display