Properties

Label 3.3.3.9a8.1
Base Q3\Q_{3}
Degree 99
e 33
f 33
c 99
Galois group C32:S3C_3^2 : S_3 (as 9T13)

Related objects

Downloads

Learn more

Defining polynomial

(x3+2x+1)3+(3x2+3)(x3+2x+1)+3( x^{3} + 2 x + 1 )^{3} + \left(3 x^{2} + 3\right) ( x^{3} + 2 x + 1 ) + 3 Copy content Toggle raw display

Invariants

Base field: Q3\Q_{3}
Degree dd: 99
Ramification index ee: 33
Residue field degree ff: 33
Discriminant exponent cc: 99
Discriminant root field: Q3(3)\Q_{3}(\sqrt{3})
Root number: ii
Aut(K/Q3)\Aut(K/\Q_{3}): C1C_1
This field is not Galois over Q3.\Q_{3}.
Visible Artin slopes:[32][\frac{3}{2}]
Visible Swan slopes:[12][\frac{1}{2}]
Means:13\langle\frac{1}{3}\rangle
Rams:(12)(\frac{1}{2})
Jump set:undefined
Roots of unity:26=(331)26 = (3^{ 3 } - 1)

Intermediate fields

3.3.1.0a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:3.3.1.0a1.1 Q3(t)\cong \Q_{3}(t) where tt is a root of x3+2x+1 x^{3} + 2 x + 1 Copy content Toggle raw display
Relative Eisenstein polynomial: x3+(3t2+3)x+3 x^{3} + \left(3 t^{2} + 3\right) x + 3  Q3(t)[x]\ \in\Q_{3}(t)[x] Copy content Toggle raw display

Ramification polygon

Residual polynomials:z+(t2+1)z + (t^{2} + 1)
Associated inertia:11
Indices of inseparability:[1,0][1, 0]

Invariants of the Galois closure

Galois degree: 5454
Galois group: C32:C6C_3^2:C_6 (as 9T13)
Inertia group: Intransitive group isomorphic to C3:S3C_3:S_3
Wild inertia group: C32C_3^2
Galois unramified degree: 33
Galois tame degree: 22
Galois Artin slopes: [32,32][\frac{3}{2}, \frac{3}{2}]
Galois Swan slopes: [12,12][\frac{1}{2},\frac{1}{2}]
Galois mean slope: 1.38888888888888881.3888888888888888
Galois splitting model:x9+6x7x69x5+45x457x3+108x2123x+43x^{9} + 6 x^{7} - x^{6} - 9 x^{5} + 45 x^{4} - 57 x^{3} + 108 x^{2} - 123 x + 43