Properties

Label 5.12.1.0a1.1
Base Q5\Q_{5}
Degree 1212
e 11
f 1212
c 00
Galois group C12C_{12} (as 12T1)

Related objects

Downloads

Learn more

Defining polynomial

x12+x7+x6+4x4+4x3+3x2+2x+2x^{12} + x^{7} + x^{6} + 4 x^{4} + 4 x^{3} + 3 x^{2} + 2 x + 2 Copy content Toggle raw display

Invariants

Base field: Q5\Q_{5}
Degree dd: 1212
Ramification index ee: 11
Residue field degree ff: 1212
Discriminant exponent cc: 00
Discriminant root field: Q5(2)\Q_{5}(\sqrt{2})
Root number: 11
Aut(K/Q5)\Aut(K/\Q_{5}) ==Gal(K/Q5)\Gal(K/\Q_{5}): C12C_{12}
This field is Galois and abelian over Q5.\Q_{5}.
Visible Artin slopes:[ ][\ ]
Visible Swan slopes:[][]
Means: \langle\ \rangle
Rams:( )(\ )
Jump set:undefined
Roots of unity:244140624=(5121)244140624 = (5^{ 12 } - 1)

Intermediate fields

Q5(2)\Q_{5}(\sqrt{2}), 5.3.1.0a1.1, 5.4.1.0a1.1, 5.6.1.0a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:5.12.1.0a1.1 Q5(t)\cong \Q_{5}(t) where tt is a root of x12+x7+x6+4x4+4x3+3x2+2x+2 x^{12} + x^{7} + x^{6} + 4 x^{4} + 4 x^{3} + 3 x^{2} + 2 x + 2 Copy content Toggle raw display
Relative Eisenstein polynomial: x5 x - 5  Q5(t)[x]\ \in\Q_{5}(t)[x] Copy content Toggle raw display

Ramification polygon

The ramification polygon is trivial for unramified extensions.

Invariants of the Galois closure

Galois degree: 1212
Galois group: C12C_{12} (as 12T1)
Inertia group: trivial
Wild inertia group: C1C_1
Galois unramified degree: 1212
Galois tame degree: 11
Galois Artin slopes: [ ][\ ]
Galois Swan slopes: [][]
Galois mean slope: 0.00.0
Galois splitting model:x1220x10+122x8280x6+264x496x2+8x^{12} - 20 x^{10} + 122 x^{8} - 280 x^{6} + 264 x^{4} - 96 x^{2} + 8