Properties

Label 6.6.300125.1-71.2-b2
Base field 6.6.300125.1
Conductor norm \( 71 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.300125.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 7 x^{4} + 2 x^{3} + 7 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 7, 2, -7, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 7, 2, -7, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 7, 2, -7, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(-8a^{5}+2a^{4}+58a^{3}+27a^{2}-39a-12\right){x}{y}+\left(-5a^{5}+a^{4}+37a^{3}+18a^{2}-26a-7\right){y}={x}^{3}+\left(4a^{5}-2a^{4}-28a^{3}-7a^{2}+18a+1\right){x}^{2}+\left(-8a^{5}+11a^{4}+45a^{3}-24a^{2}-8a+1\right){x}-10a^{5}-15a^{4}+96a^{3}+131a^{2}-97a-27\)
sage: E = EllipticCurve([K([-12,-39,27,58,2,-8]),K([1,18,-7,-28,-2,4]),K([-7,-26,18,37,1,-5]),K([1,-8,-24,45,11,-8]),K([-27,-97,131,96,-15,-10])])
 
gp: E = ellinit([Polrev([-12,-39,27,58,2,-8]),Polrev([1,18,-7,-28,-2,4]),Polrev([-7,-26,18,37,1,-5]),Polrev([1,-8,-24,45,11,-8]),Polrev([-27,-97,131,96,-15,-10])], K);
 
magma: E := EllipticCurve([K![-12,-39,27,58,2,-8],K![1,18,-7,-28,-2,4],K![-7,-26,18,37,1,-5],K![1,-8,-24,45,11,-8],K![-27,-97,131,96,-15,-10]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^5+a^4+14a^3+4a^2-9a-4)\) = \((-2a^5+a^4+14a^3+4a^2-9a-4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 71 \) = \(71\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-3a^5+21a^3+17a^2-7a-7)\) = \((-2a^5+a^4+14a^3+4a^2-9a-4)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -5041 \) = \(-71^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{2420952621619}{5041} a^{5} - \frac{464004317169}{5041} a^{4} - \frac{246254617652}{71} a^{3} - \frac{9103530423609}{5041} a^{2} + \frac{11054899265248}{5041} a + \frac{4395816073739}{5041} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-13 a^{5} + 3 a^{4} + 94 a^{3} + 45 a^{2} - 59 a - 15 : 21 a^{5} - 4 a^{4} - 152 a^{3} - 79 a^{2} + 92 a + 28 : 1\right)$
Height \(0.0060775655434875208948068184142481340551\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(a^{5} - \frac{1}{4} a^{4} - \frac{13}{2} a^{3} - \frac{17}{4} a^{2} + a + 3 : -\frac{1}{2} a^{5} + a^{4} + \frac{19}{8} a^{3} - \frac{27}{8} a^{2} - \frac{1}{4} a + \frac{3}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.0060775655434875208948068184142481340551 \)
Period: \( 66963.547141587985708763348767015196595 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 2.22863 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a^5+a^4+14a^3+4a^2-9a-4)\) \(71\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 71.2-b consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.