Properties

Label 25.1.346...625.1
Degree $25$
Signature $[1, 12]$
Discriminant $3.469\times 10^{40}$
Root discriminant \(41.84\)
Ramified prime $5$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_5^2:C_{20}$ (as 25T34)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^25 - 135*x^20 - 460*x^15 - 1580*x^10 + 455*x^5 - 32)
 
gp: K = bnfinit(y^25 - 135*y^20 - 460*y^15 - 1580*y^10 + 455*y^5 - 32, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^25 - 135*x^20 - 460*x^15 - 1580*x^10 + 455*x^5 - 32);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^25 - 135*x^20 - 460*x^15 - 1580*x^10 + 455*x^5 - 32)
 

\( x^{25} - 135x^{20} - 460x^{15} - 1580x^{10} + 455x^{5} - 32 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $25$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 12]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(34694469519536141888238489627838134765625\) \(\medspace = 5^{58}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(41.84\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $5^{239/100}\approx 46.83152609852333$
Ramified primes:   \(5\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{5}a^{7}+\frac{1}{5}a^{6}-\frac{1}{5}a^{5}-\frac{2}{5}a^{2}-\frac{2}{5}a+\frac{2}{5}$, $\frac{1}{5}a^{8}-\frac{2}{5}a^{6}+\frac{1}{5}a^{5}-\frac{2}{5}a^{3}-\frac{1}{5}a-\frac{2}{5}$, $\frac{1}{5}a^{9}-\frac{2}{5}a^{6}-\frac{2}{5}a^{5}-\frac{2}{5}a^{4}-\frac{1}{5}a-\frac{1}{5}$, $\frac{1}{5}a^{10}+\frac{1}{5}a^{5}-\frac{1}{5}$, $\frac{1}{5}a^{11}+\frac{1}{5}a^{6}-\frac{1}{5}a$, $\frac{1}{5}a^{12}-\frac{1}{5}a^{6}+\frac{1}{5}a^{5}+\frac{1}{5}a^{2}+\frac{2}{5}a-\frac{2}{5}$, $\frac{1}{25}a^{13}-\frac{1}{25}a^{12}+\frac{2}{25}a^{11}+\frac{2}{25}a^{10}+\frac{1}{25}a^{8}-\frac{1}{25}a^{7}+\frac{2}{25}a^{6}+\frac{2}{25}a^{5}-\frac{6}{25}a^{3}+\frac{6}{25}a^{2}-\frac{12}{25}a-\frac{12}{25}$, $\frac{1}{25}a^{14}+\frac{1}{25}a^{12}-\frac{1}{25}a^{11}+\frac{2}{25}a^{10}+\frac{1}{25}a^{9}+\frac{1}{25}a^{7}-\frac{1}{25}a^{6}+\frac{2}{25}a^{5}-\frac{6}{25}a^{4}-\frac{6}{25}a^{2}+\frac{6}{25}a-\frac{12}{25}$, $\frac{1}{25}a^{15}-\frac{1}{25}a^{10}-\frac{8}{25}a^{5}+\frac{12}{25}$, $\frac{1}{25}a^{16}-\frac{1}{25}a^{11}-\frac{8}{25}a^{6}+\frac{12}{25}a$, $\frac{1}{25}a^{17}-\frac{1}{25}a^{12}+\frac{2}{25}a^{7}+\frac{2}{5}a^{6}-\frac{2}{5}a^{5}-\frac{8}{25}a^{2}+\frac{1}{5}a-\frac{1}{5}$, $\frac{1}{25}a^{18}-\frac{1}{25}a^{12}+\frac{2}{25}a^{11}+\frac{2}{25}a^{10}-\frac{2}{25}a^{8}-\frac{1}{25}a^{7}-\frac{8}{25}a^{6}+\frac{7}{25}a^{5}-\frac{4}{25}a^{3}+\frac{6}{25}a^{2}+\frac{8}{25}a+\frac{3}{25}$, $\frac{1}{125}a^{19}+\frac{2}{125}a^{18}-\frac{1}{125}a^{17}-\frac{2}{125}a^{16}+\frac{1}{125}a^{15}-\frac{1}{125}a^{14}-\frac{2}{125}a^{13}+\frac{1}{125}a^{12}+\frac{2}{125}a^{11}-\frac{1}{125}a^{10}-\frac{8}{125}a^{9}+\frac{9}{125}a^{8}+\frac{8}{125}a^{7}-\frac{34}{125}a^{6}+\frac{17}{125}a^{5}+\frac{12}{125}a^{4}-\frac{26}{125}a^{3}-\frac{12}{125}a^{2}-\frac{49}{125}a-\frac{38}{125}$, $\frac{1}{75125}a^{20}+\frac{1382}{75125}a^{15}-\frac{7466}{75125}a^{10}+\frac{16373}{75125}a^{5}-\frac{28079}{75125}$, $\frac{1}{150250}a^{21}-\frac{1623}{150250}a^{16}+\frac{5282}{75125}a^{11}+\frac{27719}{75125}a^{6}-\frac{4039}{150250}a$, $\frac{1}{300500}a^{22}-\frac{1623}{300500}a^{17}+\frac{2641}{75125}a^{12}+\frac{6347}{75125}a^{7}+\frac{2}{5}a^{6}-\frac{2}{5}a^{5}-\frac{94189}{300500}a^{2}+\frac{1}{5}a-\frac{1}{5}$, $\frac{1}{601000}a^{23}-\frac{1623}{601000}a^{18}+\frac{2641}{150250}a^{13}+\frac{6347}{150250}a^{8}-\frac{2}{5}a^{6}+\frac{1}{5}a^{5}+\frac{206311}{601000}a^{3}-\frac{1}{5}a-\frac{2}{5}$, $\frac{1}{1202000}a^{24}-\frac{1623}{1202000}a^{19}+\frac{2641}{300500}a^{14}-\frac{23703}{300500}a^{9}+\frac{446711}{1202000}a^{4}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $12$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{55087}{1202000}a^{24}-\frac{7429801}{1202000}a^{19}-\frac{6568233}{300500}a^{14}-\frac{22712361}{300500}a^{9}+\frac{12885257}{1202000}a^{4}$, $\frac{22713}{1202000}a^{24}-\frac{7269}{601000}a^{23}+\frac{5321}{75125}a^{22}+\frac{11603}{150250}a^{21}+\frac{481}{15025}a^{20}+\frac{3062959}{1202000}a^{19}+\frac{979587}{601000}a^{18}-\frac{717808}{75125}a^{17}-\frac{1564939}{150250}a^{16}-\frac{64872}{15025}a^{15}+\frac{2723307}{300500}a^{14}+\frac{894001}{150250}a^{13}-\frac{2518676}{75125}a^{12}-\frac{2767534}{75125}a^{11}-\frac{229753}{15025}a^{10}+\frac{9341999}{300500}a^{9}+\frac{3103587}{150250}a^{8}-\frac{8666647}{75125}a^{7}-\frac{9518428}{75125}a^{6}-\frac{790406}{15025}a^{5}-\frac{5834543}{1202000}a^{4}+\frac{229021}{601000}a^{3}+\frac{1478701}{75125}a^{2}+\frac{2862223}{150250}a+\frac{108454}{15025}$, $\frac{81643}{601000}a^{24}-\frac{23601}{300500}a^{22}-\frac{5771}{150250}a^{21}+\frac{1672}{75125}a^{20}-\frac{11008429}{601000}a^{19}+\frac{3181983}{300500}a^{17}+\frac{778043}{150250}a^{16}-\frac{225516}{75125}a^{15}-\frac{9839977}{150250}a^{14}+\frac{2854219}{75125}a^{12}+\frac{1397623}{75125}a^{11}-\frac{796707}{75125}a^{10}-\frac{33842399}{150250}a^{9}+\frac{9803008}{75125}a^{7}+\frac{4803811}{75125}a^{6}-\frac{2728434}{75125}a^{5}+\frac{15320093}{601000}a^{4}-\frac{3918691}{300500}a^{2}-\frac{839111}{150250}a+\frac{401697}{75125}$, $\frac{2759}{240400}a^{24}-\frac{34441}{601000}a^{23}+\frac{1441}{60100}a^{22}+\frac{3344}{75125}a^{21}-\frac{14873}{9616}a^{19}+\frac{4644463}{601000}a^{18}-\frac{7775}{2404}a^{17}-\frac{451032}{75125}a^{16}-\frac{338969}{60100}a^{14}+\frac{4131539}{150250}a^{13}-\frac{171136}{15025}a^{12}-\frac{1593414}{75125}a^{11}-\frac{1152081}{60100}a^{9}+\frac{14236383}{150250}a^{8}-\frac{584764}{15025}a^{7}-\frac{5456868}{75125}a^{6}+\frac{416033}{240400}a^{4}-\frac{7482711}{601000}a^{3}+\frac{433807}{60100}a^{2}+\frac{728269}{75125}a$, $\frac{12808}{75125}a^{24}+\frac{43051}{300500}a^{23}+\frac{47939}{300500}a^{22}-\frac{861}{30050}a^{21}-\frac{8687}{75125}a^{20}-\frac{1726669}{75125}a^{19}-\frac{5805173}{300500}a^{18}-\frac{6466297}{300500}a^{17}+\frac{116071}{30050}a^{16}+\frac{1171491}{75125}a^{15}-\frac{6216763}{75125}a^{14}-\frac{5177104}{75125}a^{13}-\frac{5697241}{75125}a^{12}+\frac{209113}{15025}a^{11}+\frac{4165157}{75125}a^{10}-\frac{21400151}{75125}a^{9}-\frac{17816598}{75125}a^{8}-\frac{19604057}{75125}a^{7}+\frac{716043}{15025}a^{6}+\frac{14322239}{75125}a^{5}+\frac{1856653}{75125}a^{4}+\frac{8598641}{300500}a^{3}+\frac{12763789}{300500}a^{2}-\frac{141643}{30050}a-\frac{2000917}{75125}$, $\frac{23451}{75125}a^{24}-\frac{74343}{120200}a^{23}-\frac{21984}{75125}a^{22}+\frac{5321}{75125}a^{21}+\frac{1403}{15025}a^{20}+\frac{3163908}{75125}a^{19}+\frac{10026609}{120200}a^{18}+\frac{2964597}{75125}a^{17}-\frac{717808}{75125}a^{16}-\frac{37839}{3005}a^{15}+\frac{11054236}{75125}a^{14}+\frac{1775279}{6010}a^{13}+\frac{10549999}{75125}a^{12}-\frac{2518676}{75125}a^{11}-\frac{134738}{3005}a^{10}+\frac{37977842}{75125}a^{9}+\frac{30519677}{30050}a^{8}+\frac{36286253}{75125}a^{7}-\frac{8666647}{75125}a^{6}-\frac{2318761}{15025}a^{5}-\frac{7460426}{75125}a^{4}-\frac{3594269}{24040}a^{3}-\frac{4608034}{75125}a^{2}+\frac{1478701}{75125}a+\frac{289794}{15025}$, $\frac{254773}{601000}a^{24}-\frac{91419}{601000}a^{23}-\frac{1403}{15025}a^{22}+\frac{961}{150250}a^{21}-\frac{3138}{75125}a^{20}-\frac{34361739}{601000}a^{19}+\frac{12330677}{601000}a^{18}+\frac{37839}{3005}a^{17}-\frac{129323}{150250}a^{16}+\frac{423204}{75125}a^{15}-\frac{30398647}{150250}a^{14}+\frac{10880251}{150250}a^{13}+\frac{134738}{3005}a^{12}-\frac{248858}{75125}a^{11}+\frac{1500823}{75125}a^{10}-\frac{104526279}{150250}a^{9}+\frac{37417317}{150250}a^{8}+\frac{2318761}{15025}a^{7}-\frac{851781}{75125}a^{6}+\frac{5175626}{75125}a^{5}+\frac{62478003}{601000}a^{4}-\frac{23650389}{601000}a^{3}-\frac{289794}{15025}a^{2}-\frac{245429}{150250}a-\frac{682843}{75125}$, $\frac{254773}{601000}a^{24}-\frac{51661}{601000}a^{23}-\frac{47939}{300500}a^{22}-\frac{58}{3005}a^{21}+\frac{1403}{15025}a^{20}-\frac{34361739}{601000}a^{19}+\frac{6965883}{601000}a^{18}+\frac{6466297}{300500}a^{17}+\frac{39152}{15025}a^{16}-\frac{37839}{3005}a^{15}-\frac{30398647}{150250}a^{14}+\frac{6222669}{150250}a^{13}+\frac{5697241}{75125}a^{12}+\frac{133159}{15025}a^{11}-\frac{134738}{3005}a^{10}-\frac{104526279}{150250}a^{9}+\frac{21396813}{150250}a^{8}+\frac{19604057}{75125}a^{7}+\frac{90697}{3005}a^{6}-\frac{2318761}{15025}a^{5}+\frac{62478003}{601000}a^{4}-\frac{9714571}{601000}a^{3}-\frac{12763789}{300500}a^{2}-\frac{161107}{15025}a+\frac{304819}{15025}$, $\frac{55573}{1202000}a^{24}+\frac{13069}{300500}a^{23}-\frac{10137}{300500}a^{22}-\frac{3449}{150250}a^{21}-\frac{422}{75125}a^{20}-\frac{7497379}{1202000}a^{19}-\frac{1762627}{300500}a^{18}+\frac{1367251}{300500}a^{17}+\frac{465187}{150250}a^{16}+\frac{56861}{75125}a^{15}-\frac{6558827}{300500}a^{14}-\frac{1559796}{75125}a^{13}+\frac{1207738}{75125}a^{12}+\frac{822062}{75125}a^{11}+\frac{208757}{75125}a^{10}-\frac{22524539}{300500}a^{9}-\frac{5371012}{75125}a^{8}+\frac{4147416}{75125}a^{7}+\frac{2837964}{75125}a^{6}+\frac{723294}{75125}a^{5}+\frac{17521283}{1202000}a^{4}+\frac{2993119}{300500}a^{3}-\frac{2731327}{300500}a^{2}-\frac{824039}{150250}a-\frac{74502}{75125}$, $\frac{193951}{601000}a^{23}-\frac{26158233}{601000}a^{18}-\frac{23152219}{150250}a^{13}-\frac{79641783}{150250}a^{8}+\frac{46691041}{601000}a^{3}$, $\frac{632}{15025}a^{24}-\frac{7269}{601000}a^{23}+\frac{939}{75125}a^{22}+\frac{1063}{30050}a^{21}-\frac{2611}{75125}a^{20}-\frac{85171}{15025}a^{19}+\frac{979587}{601000}a^{18}-\frac{126672}{75125}a^{17}-\frac{143417}{30050}a^{16}+\frac{352188}{75125}a^{15}-\frac{310778}{15025}a^{14}+\frac{894001}{150250}a^{13}-\frac{444649}{75125}a^{12}-\frac{250393}{15025}a^{11}+\frac{1241356}{75125}a^{10}-\frac{214974}{3005}a^{9}+\frac{3103587}{150250}a^{8}-\frac{1504838}{75125}a^{7}-\frac{864769}{15025}a^{6}+\frac{4233272}{75125}a^{5}+\frac{35258}{15025}a^{4}+\frac{229021}{601000}a^{3}+\frac{261124}{75125}a^{2}+\frac{292173}{30050}a-\frac{662821}{75125}$, $\frac{28531}{150250}a^{24}-\frac{159047}{300500}a^{23}+\frac{66213}{150250}a^{22}-\frac{20068}{75125}a^{21}+\frac{4899}{75125}a^{20}-\frac{3845163}{150250}a^{19}+\frac{21447461}{300500}a^{18}-\frac{8929749}{150250}a^{17}+\frac{2706674}{75125}a^{16}-\frac{660947}{75125}a^{15}-\frac{7001658}{75125}a^{14}+\frac{19095553}{75125}a^{13}-\frac{15836209}{75125}a^{12}+\frac{9569313}{75125}a^{11}-\frac{2309919}{75125}a^{10}-\frac{24135261}{75125}a^{9}+\frac{65696656}{75125}a^{8}-\frac{54471328}{75125}a^{7}+\frac{32898086}{75125}a^{6}-\frac{7943353}{75125}a^{5}+\frac{2078491}{150250}a^{4}-\frac{32826657}{300500}a^{3}+\frac{15185943}{150250}a^{2}-\frac{5041603}{75125}a+\frac{1554449}{75125}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 50169770016.52367 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{12}\cdot 50169770016.52367 \cdot 1}{2\cdot\sqrt{34694469519536141888238489627838134765625}}\cr\approx \mathstrut & 1.01969526991187 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^25 - 135*x^20 - 460*x^15 - 1580*x^10 + 455*x^5 - 32)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^25 - 135*x^20 - 460*x^15 - 1580*x^10 + 455*x^5 - 32, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^25 - 135*x^20 - 460*x^15 - 1580*x^10 + 455*x^5 - 32);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^25 - 135*x^20 - 460*x^15 - 1580*x^10 + 455*x^5 - 32);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_5^2:C_{20}$ (as 25T34):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 500
The 26 conjugacy class representatives for $C_5^2:C_{20}$
Character table for $C_5^2:C_{20}$

Intermediate fields

5.1.1953125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 25 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $20{,}\,{\href{/padicField/2.4.0.1}{4} }{,}\,{\href{/padicField/2.1.0.1}{1} }$ $20{,}\,{\href{/padicField/3.4.0.1}{4} }{,}\,{\href{/padicField/3.1.0.1}{1} }$ R ${\href{/padicField/7.4.0.1}{4} }^{6}{,}\,{\href{/padicField/7.1.0.1}{1} }$ ${\href{/padicField/11.5.0.1}{5} }^{5}$ $20{,}\,{\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ $20{,}\,{\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ ${\href{/padicField/19.10.0.1}{10} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }$ $20{,}\,{\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.10.0.1}{10} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }$ ${\href{/padicField/31.5.0.1}{5} }^{4}{,}\,{\href{/padicField/31.1.0.1}{1} }^{5}$ $20{,}\,{\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ ${\href{/padicField/41.5.0.1}{5} }^{5}$ ${\href{/padicField/43.4.0.1}{4} }^{6}{,}\,{\href{/padicField/43.1.0.1}{1} }$ $20{,}\,{\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ $20{,}\,{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ ${\href{/padicField/59.10.0.1}{10} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(5\) Copy content Toggle raw display Deg $25$$25$$1$$58$