Properties

Label 28.4.167...536.2
Degree $28$
Signature $[4, 12]$
Discriminant $1.670\times 10^{46}$
Root discriminant \(44.75\)
Ramified primes $2,3$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $G(2,2)$ (as 28T393)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^28 - 4*x^27 + 114*x^24 - 384*x^23 + 36*x^22 + 3048*x^21 - 10707*x^20 + 17652*x^19 - 5556*x^18 - 45144*x^17 + 131832*x^16 - 218112*x^15 + 204000*x^14 + 46224*x^13 - 448863*x^12 + 815100*x^11 - 1018896*x^10 + 1095936*x^9 - 710154*x^8 + 300960*x^7 + 235860*x^6 + 416280*x^5 + 163233*x^4 - 76476*x^3 - 92004*x^2 - 26072*x - 3676)
 
gp: K = bnfinit(y^28 - 4*y^27 + 114*y^24 - 384*y^23 + 36*y^22 + 3048*y^21 - 10707*y^20 + 17652*y^19 - 5556*y^18 - 45144*y^17 + 131832*y^16 - 218112*y^15 + 204000*y^14 + 46224*y^13 - 448863*y^12 + 815100*y^11 - 1018896*y^10 + 1095936*y^9 - 710154*y^8 + 300960*y^7 + 235860*y^6 + 416280*y^5 + 163233*y^4 - 76476*y^3 - 92004*y^2 - 26072*y - 3676, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^28 - 4*x^27 + 114*x^24 - 384*x^23 + 36*x^22 + 3048*x^21 - 10707*x^20 + 17652*x^19 - 5556*x^18 - 45144*x^17 + 131832*x^16 - 218112*x^15 + 204000*x^14 + 46224*x^13 - 448863*x^12 + 815100*x^11 - 1018896*x^10 + 1095936*x^9 - 710154*x^8 + 300960*x^7 + 235860*x^6 + 416280*x^5 + 163233*x^4 - 76476*x^3 - 92004*x^2 - 26072*x - 3676);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^28 - 4*x^27 + 114*x^24 - 384*x^23 + 36*x^22 + 3048*x^21 - 10707*x^20 + 17652*x^19 - 5556*x^18 - 45144*x^17 + 131832*x^16 - 218112*x^15 + 204000*x^14 + 46224*x^13 - 448863*x^12 + 815100*x^11 - 1018896*x^10 + 1095936*x^9 - 710154*x^8 + 300960*x^7 + 235860*x^6 + 416280*x^5 + 163233*x^4 - 76476*x^3 - 92004*x^2 - 26072*x - 3676)
 

\( x^{28} - 4 x^{27} + 114 x^{24} - 384 x^{23} + 36 x^{22} + 3048 x^{21} - 10707 x^{20} + 17652 x^{19} + \cdots - 3676 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $28$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[4, 12]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(16703873099612894175413785718089893588328513536\) \(\medspace = 2^{106}\cdot 3^{30}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(44.75\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(3\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3}a^{8}-\frac{1}{3}a^{6}-\frac{1}{3}a^{5}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-\frac{1}{3}$, $\frac{1}{3}a^{9}-\frac{1}{3}a^{7}-\frac{1}{3}a^{6}+\frac{1}{3}a^{4}+\frac{1}{3}a^{3}-\frac{1}{3}a$, $\frac{1}{3}a^{10}-\frac{1}{3}a^{7}-\frac{1}{3}a^{6}+\frac{1}{3}a^{4}+\frac{1}{3}a^{3}-\frac{1}{3}$, $\frac{1}{3}a^{11}-\frac{1}{3}a^{7}-\frac{1}{3}a^{6}+\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{3}a^{12}-\frac{1}{3}a^{7}-\frac{1}{3}a^{6}+\frac{1}{3}a^{4}-\frac{1}{3}a^{3}-\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{3}a^{13}-\frac{1}{3}a^{7}-\frac{1}{3}a^{6}-\frac{1}{3}a^{4}+\frac{1}{3}a^{3}-\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{3}a^{14}-\frac{1}{3}a^{7}-\frac{1}{3}a^{6}+\frac{1}{3}a^{5}+\frac{1}{3}a^{4}+\frac{1}{3}a^{3}-\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{9}a^{15}+\frac{1}{9}a^{14}-\frac{1}{9}a^{13}+\frac{1}{9}a^{11}-\frac{1}{9}a^{10}-\frac{1}{9}a^{9}+\frac{1}{3}a^{7}+\frac{4}{9}a^{6}+\frac{1}{9}a^{5}-\frac{4}{9}a^{4}-\frac{1}{3}a^{3}+\frac{1}{9}a^{2}+\frac{2}{9}a+\frac{2}{9}$, $\frac{1}{9}a^{16}+\frac{1}{9}a^{14}+\frac{1}{9}a^{13}+\frac{1}{9}a^{12}+\frac{1}{9}a^{11}+\frac{1}{9}a^{9}+\frac{4}{9}a^{7}+\frac{1}{3}a^{6}+\frac{1}{9}a^{5}-\frac{2}{9}a^{4}-\frac{2}{9}a^{3}+\frac{1}{9}a^{2}+\frac{1}{3}a+\frac{4}{9}$, $\frac{1}{9}a^{17}-\frac{1}{9}a^{13}+\frac{1}{9}a^{12}-\frac{1}{9}a^{11}-\frac{1}{9}a^{10}+\frac{1}{9}a^{9}+\frac{1}{9}a^{8}-\frac{1}{3}a^{7}-\frac{1}{3}a^{6}+\frac{2}{9}a^{4}+\frac{4}{9}a^{3}-\frac{1}{9}a^{2}-\frac{4}{9}a-\frac{2}{9}$, $\frac{1}{18}a^{18}+\frac{1}{9}a^{14}-\frac{1}{9}a^{13}+\frac{1}{9}a^{12}+\frac{1}{9}a^{11}-\frac{1}{9}a^{10}-\frac{1}{9}a^{9}+\frac{1}{3}a^{7}+\frac{1}{3}a^{6}+\frac{1}{9}a^{5}-\frac{4}{9}a^{4}-\frac{2}{9}a^{3}-\frac{7}{18}a^{2}+\frac{2}{9}a-\frac{1}{3}$, $\frac{1}{18}a^{19}+\frac{1}{9}a^{14}-\frac{1}{9}a^{13}+\frac{1}{9}a^{12}+\frac{1}{9}a^{11}+\frac{1}{9}a^{9}-\frac{1}{3}a^{7}-\frac{1}{3}a^{6}+\frac{1}{9}a^{5}+\frac{2}{9}a^{4}-\frac{1}{18}a^{3}+\frac{1}{9}a^{2}+\frac{1}{9}a-\frac{2}{9}$, $\frac{1}{18}a^{20}+\frac{1}{9}a^{14}-\frac{1}{9}a^{13}+\frac{1}{9}a^{12}-\frac{1}{9}a^{11}-\frac{1}{9}a^{10}+\frac{1}{9}a^{9}-\frac{1}{3}a^{7}-\frac{1}{3}a^{6}+\frac{1}{9}a^{5}-\frac{5}{18}a^{4}+\frac{4}{9}a^{3}+\frac{1}{3}a^{2}-\frac{4}{9}a-\frac{2}{9}$, $\frac{1}{18}a^{21}+\frac{1}{9}a^{14}-\frac{1}{9}a^{13}-\frac{1}{9}a^{12}+\frac{1}{9}a^{11}-\frac{1}{9}a^{10}+\frac{1}{9}a^{9}+\frac{1}{3}a^{7}+\frac{1}{3}a^{6}-\frac{7}{18}a^{5}-\frac{4}{9}a^{4}+\frac{1}{9}a^{2}+\frac{2}{9}a+\frac{4}{9}$, $\frac{1}{54}a^{22}-\frac{1}{54}a^{21}+\frac{1}{54}a^{19}-\frac{1}{54}a^{18}-\frac{1}{9}a^{14}+\frac{4}{27}a^{13}-\frac{4}{27}a^{12}-\frac{1}{9}a^{11}+\frac{4}{27}a^{10}-\frac{4}{27}a^{9}-\frac{1}{2}a^{6}+\frac{7}{18}a^{5}-\frac{10}{27}a^{4}-\frac{7}{54}a^{3}+\frac{7}{18}a^{2}-\frac{10}{27}a+\frac{10}{27}$, $\frac{1}{54}a^{23}-\frac{1}{54}a^{21}+\frac{1}{54}a^{20}-\frac{1}{54}a^{18}+\frac{4}{27}a^{14}-\frac{1}{9}a^{13}+\frac{2}{27}a^{12}+\frac{4}{27}a^{11}-\frac{1}{9}a^{10}+\frac{2}{27}a^{9}+\frac{1}{6}a^{7}-\frac{1}{3}a^{6}+\frac{7}{54}a^{5}-\frac{5}{18}a^{4}-\frac{2}{27}a^{3}+\frac{7}{54}a^{2}-\frac{4}{9}a+\frac{7}{27}$, $\frac{1}{54}a^{24}-\frac{1}{54}a^{18}+\frac{1}{27}a^{15}-\frac{1}{27}a^{9}-\frac{1}{6}a^{8}+\frac{1}{3}a^{7}-\frac{13}{27}a^{6}-\frac{1}{3}a^{5}-\frac{1}{3}a^{4}-\frac{1}{6}a^{2}+\frac{1}{3}a+\frac{13}{27}$, $\frac{1}{54}a^{25}-\frac{1}{54}a^{19}+\frac{1}{27}a^{16}-\frac{1}{27}a^{10}-\frac{1}{6}a^{9}-\frac{13}{27}a^{7}-\frac{1}{2}a^{3}+\frac{13}{27}a+\frac{1}{3}$, $\frac{1}{756}a^{26}+\frac{1}{378}a^{25}-\frac{1}{189}a^{24}-\frac{1}{189}a^{22}-\frac{1}{378}a^{21}-\frac{5}{378}a^{20}-\frac{1}{42}a^{19}-\frac{1}{756}a^{18}-\frac{1}{27}a^{17}-\frac{19}{378}a^{16}+\frac{4}{189}a^{15}+\frac{8}{63}a^{14}+\frac{19}{189}a^{13}-\frac{13}{189}a^{12}-\frac{5}{189}a^{11}+\frac{5}{84}a^{10}+\frac{53}{378}a^{9}+\frac{13}{189}a^{8}-\frac{55}{189}a^{7}+\frac{2}{27}a^{6}-\frac{29}{126}a^{5}-\frac{59}{378}a^{4}+\frac{11}{378}a^{3}+\frac{179}{756}a^{2}-\frac{1}{3}a-\frac{23}{378}$, $\frac{1}{22\!\cdots\!96}a^{27}+\frac{28\!\cdots\!92}{57\!\cdots\!99}a^{26}+\frac{15\!\cdots\!87}{38\!\cdots\!66}a^{25}+\frac{17\!\cdots\!11}{12\!\cdots\!22}a^{24}+\frac{53\!\cdots\!72}{57\!\cdots\!99}a^{23}-\frac{72\!\cdots\!77}{11\!\cdots\!98}a^{22}+\frac{14\!\cdots\!60}{57\!\cdots\!99}a^{21}+\frac{31\!\cdots\!99}{11\!\cdots\!98}a^{20}+\frac{16\!\cdots\!29}{22\!\cdots\!96}a^{19}+\frac{12\!\cdots\!75}{57\!\cdots\!99}a^{18}-\frac{53\!\cdots\!37}{11\!\cdots\!98}a^{17}-\frac{93\!\cdots\!84}{19\!\cdots\!33}a^{16}+\frac{87\!\cdots\!35}{21\!\cdots\!37}a^{15}+\frac{76\!\cdots\!60}{57\!\cdots\!99}a^{14}-\frac{76\!\cdots\!23}{82\!\cdots\!57}a^{13}+\frac{32\!\cdots\!84}{57\!\cdots\!99}a^{12}+\frac{17\!\cdots\!57}{46\!\cdots\!04}a^{11}+\frac{71\!\cdots\!81}{57\!\cdots\!99}a^{10}-\frac{77\!\cdots\!07}{16\!\cdots\!14}a^{9}+\frac{81\!\cdots\!55}{11\!\cdots\!98}a^{8}-\frac{73\!\cdots\!17}{19\!\cdots\!33}a^{7}-\frac{54\!\cdots\!41}{42\!\cdots\!74}a^{6}-\frac{17\!\cdots\!13}{57\!\cdots\!99}a^{5}+\frac{40\!\cdots\!63}{11\!\cdots\!98}a^{4}+\frac{18\!\cdots\!93}{22\!\cdots\!96}a^{3}-\frac{27\!\cdots\!90}{57\!\cdots\!99}a^{2}+\frac{10\!\cdots\!49}{11\!\cdots\!98}a+\frac{17\!\cdots\!07}{19\!\cdots\!33}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $15$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{43\!\cdots\!61}{12\!\cdots\!22}a^{27}+\frac{17\!\cdots\!65}{11\!\cdots\!98}a^{26}-\frac{18\!\cdots\!95}{38\!\cdots\!66}a^{25}+\frac{54\!\cdots\!56}{57\!\cdots\!99}a^{24}-\frac{44\!\cdots\!17}{11\!\cdots\!98}a^{23}+\frac{16\!\cdots\!59}{11\!\cdots\!98}a^{22}-\frac{22\!\cdots\!25}{38\!\cdots\!66}a^{21}-\frac{19\!\cdots\!74}{19\!\cdots\!33}a^{20}+\frac{23\!\cdots\!77}{57\!\cdots\!99}a^{19}-\frac{42\!\cdots\!64}{57\!\cdots\!99}a^{18}+\frac{23\!\cdots\!90}{57\!\cdots\!99}a^{17}+\frac{91\!\cdots\!20}{63\!\cdots\!11}a^{16}-\frac{28\!\cdots\!20}{57\!\cdots\!99}a^{15}+\frac{52\!\cdots\!42}{57\!\cdots\!99}a^{14}-\frac{80\!\cdots\!22}{82\!\cdots\!57}a^{13}+\frac{25\!\cdots\!21}{19\!\cdots\!33}a^{12}+\frac{83\!\cdots\!63}{54\!\cdots\!38}a^{11}-\frac{37\!\cdots\!31}{11\!\cdots\!98}a^{10}+\frac{74\!\cdots\!49}{16\!\cdots\!14}a^{9}-\frac{29\!\cdots\!28}{57\!\cdots\!99}a^{8}+\frac{15\!\cdots\!93}{38\!\cdots\!66}a^{7}-\frac{24\!\cdots\!25}{11\!\cdots\!98}a^{6}-\frac{30\!\cdots\!51}{11\!\cdots\!98}a^{5}-\frac{70\!\cdots\!14}{57\!\cdots\!99}a^{4}-\frac{35\!\cdots\!63}{21\!\cdots\!37}a^{3}+\frac{77\!\cdots\!51}{19\!\cdots\!33}a^{2}+\frac{11\!\cdots\!04}{57\!\cdots\!99}a-\frac{28\!\cdots\!97}{57\!\cdots\!99}$, $\frac{27\!\cdots\!87}{38\!\cdots\!66}a^{27}+\frac{36\!\cdots\!79}{11\!\cdots\!98}a^{26}-\frac{17\!\cdots\!79}{12\!\cdots\!22}a^{25}+\frac{28\!\cdots\!75}{57\!\cdots\!99}a^{24}-\frac{93\!\cdots\!91}{11\!\cdots\!98}a^{23}+\frac{11\!\cdots\!97}{38\!\cdots\!66}a^{22}-\frac{18\!\cdots\!23}{11\!\cdots\!98}a^{21}-\frac{40\!\cdots\!59}{19\!\cdots\!33}a^{20}+\frac{16\!\cdots\!51}{19\!\cdots\!33}a^{19}-\frac{31\!\cdots\!53}{19\!\cdots\!33}a^{18}+\frac{62\!\cdots\!94}{57\!\cdots\!99}a^{17}+\frac{53\!\cdots\!48}{19\!\cdots\!33}a^{16}-\frac{61\!\cdots\!13}{57\!\cdots\!99}a^{15}+\frac{11\!\cdots\!94}{57\!\cdots\!99}a^{14}-\frac{70\!\cdots\!93}{30\!\cdots\!91}a^{13}+\frac{34\!\cdots\!59}{57\!\cdots\!99}a^{12}+\frac{16\!\cdots\!77}{54\!\cdots\!38}a^{11}-\frac{27\!\cdots\!09}{38\!\cdots\!66}a^{10}+\frac{56\!\cdots\!83}{54\!\cdots\!38}a^{9}-\frac{69\!\cdots\!53}{57\!\cdots\!99}a^{8}+\frac{38\!\cdots\!63}{38\!\cdots\!66}a^{7}-\frac{68\!\cdots\!73}{11\!\cdots\!98}a^{6}+\frac{44\!\cdots\!83}{11\!\cdots\!98}a^{5}-\frac{52\!\cdots\!69}{19\!\cdots\!33}a^{4}-\frac{73\!\cdots\!45}{57\!\cdots\!99}a^{3}+\frac{14\!\cdots\!50}{19\!\cdots\!33}a^{2}+\frac{53\!\cdots\!06}{19\!\cdots\!33}a+\frac{88\!\cdots\!85}{19\!\cdots\!33}$, $\frac{46\!\cdots\!65}{16\!\cdots\!14}a^{27}+\frac{37\!\cdots\!59}{32\!\cdots\!28}a^{26}-\frac{74\!\cdots\!22}{82\!\cdots\!57}a^{25}-\frac{70\!\cdots\!47}{16\!\cdots\!14}a^{24}-\frac{26\!\cdots\!15}{82\!\cdots\!57}a^{23}+\frac{18\!\cdots\!19}{16\!\cdots\!14}a^{22}-\frac{15\!\cdots\!51}{82\!\cdots\!57}a^{21}-\frac{70\!\cdots\!89}{82\!\cdots\!57}a^{20}+\frac{50\!\cdots\!45}{16\!\cdots\!14}a^{19}-\frac{17\!\cdots\!93}{32\!\cdots\!28}a^{18}+\frac{15\!\cdots\!44}{82\!\cdots\!57}a^{17}+\frac{20\!\cdots\!45}{16\!\cdots\!14}a^{16}-\frac{31\!\cdots\!13}{82\!\cdots\!57}a^{15}+\frac{52\!\cdots\!30}{82\!\cdots\!57}a^{14}-\frac{71\!\cdots\!79}{11\!\cdots\!51}a^{13}-\frac{88\!\cdots\!27}{82\!\cdots\!57}a^{12}+\frac{30\!\cdots\!41}{23\!\cdots\!02}a^{11}-\frac{79\!\cdots\!57}{32\!\cdots\!28}a^{10}+\frac{35\!\cdots\!70}{11\!\cdots\!51}a^{9}-\frac{53\!\cdots\!03}{16\!\cdots\!14}a^{8}+\frac{17\!\cdots\!09}{82\!\cdots\!57}a^{7}-\frac{13\!\cdots\!15}{16\!\cdots\!14}a^{6}-\frac{60\!\cdots\!46}{82\!\cdots\!57}a^{5}-\frac{84\!\cdots\!86}{82\!\cdots\!57}a^{4}-\frac{57\!\cdots\!37}{16\!\cdots\!14}a^{3}+\frac{96\!\cdots\!31}{32\!\cdots\!28}a^{2}+\frac{19\!\cdots\!69}{82\!\cdots\!57}a+\frac{66\!\cdots\!91}{16\!\cdots\!14}$, $\frac{83\!\cdots\!31}{76\!\cdots\!32}a^{27}+\frac{57\!\cdots\!29}{11\!\cdots\!98}a^{26}-\frac{15\!\cdots\!27}{57\!\cdots\!99}a^{25}+\frac{62\!\cdots\!81}{11\!\cdots\!98}a^{24}-\frac{23\!\cdots\!88}{19\!\cdots\!33}a^{23}+\frac{56\!\cdots\!09}{11\!\cdots\!98}a^{22}-\frac{34\!\cdots\!29}{11\!\cdots\!98}a^{21}-\frac{18\!\cdots\!35}{57\!\cdots\!99}a^{20}+\frac{34\!\cdots\!13}{25\!\cdots\!44}a^{19}-\frac{10\!\cdots\!05}{38\!\cdots\!66}a^{18}+\frac{21\!\cdots\!71}{11\!\cdots\!98}a^{17}+\frac{24\!\cdots\!20}{57\!\cdots\!99}a^{16}-\frac{98\!\cdots\!31}{57\!\cdots\!99}a^{15}+\frac{20\!\cdots\!04}{63\!\cdots\!11}a^{14}-\frac{30\!\cdots\!70}{82\!\cdots\!57}a^{13}+\frac{61\!\cdots\!28}{57\!\cdots\!99}a^{12}+\frac{16\!\cdots\!29}{32\!\cdots\!28}a^{11}-\frac{45\!\cdots\!39}{38\!\cdots\!66}a^{10}+\frac{46\!\cdots\!24}{27\!\cdots\!19}a^{9}-\frac{22\!\cdots\!23}{11\!\cdots\!98}a^{8}+\frac{91\!\cdots\!68}{57\!\cdots\!99}a^{7}-\frac{10\!\cdots\!17}{11\!\cdots\!98}a^{6}+\frac{84\!\cdots\!75}{38\!\cdots\!66}a^{5}-\frac{19\!\cdots\!73}{57\!\cdots\!99}a^{4}+\frac{10\!\cdots\!25}{22\!\cdots\!96}a^{3}+\frac{14\!\cdots\!85}{11\!\cdots\!98}a^{2}+\frac{10\!\cdots\!11}{38\!\cdots\!66}a-\frac{33\!\cdots\!76}{19\!\cdots\!33}$, $\frac{42\!\cdots\!95}{76\!\cdots\!32}a^{27}-\frac{14\!\cdots\!52}{57\!\cdots\!99}a^{26}+\frac{13\!\cdots\!39}{11\!\cdots\!98}a^{25}+\frac{11\!\cdots\!93}{12\!\cdots\!22}a^{24}+\frac{36\!\cdots\!28}{57\!\cdots\!99}a^{23}-\frac{14\!\cdots\!83}{57\!\cdots\!99}a^{22}+\frac{47\!\cdots\!27}{38\!\cdots\!66}a^{21}+\frac{33\!\cdots\!70}{19\!\cdots\!33}a^{20}-\frac{53\!\cdots\!33}{76\!\cdots\!32}a^{19}+\frac{16\!\cdots\!25}{12\!\cdots\!22}a^{18}-\frac{77\!\cdots\!93}{11\!\cdots\!98}a^{17}-\frac{15\!\cdots\!38}{57\!\cdots\!99}a^{16}+\frac{17\!\cdots\!41}{19\!\cdots\!33}a^{15}-\frac{91\!\cdots\!85}{57\!\cdots\!99}a^{14}+\frac{12\!\cdots\!09}{82\!\cdots\!57}a^{13}+\frac{33\!\cdots\!88}{19\!\cdots\!33}a^{12}-\frac{37\!\cdots\!79}{10\!\cdots\!76}a^{11}+\frac{40\!\cdots\!83}{63\!\cdots\!11}a^{10}-\frac{42\!\cdots\!03}{54\!\cdots\!38}a^{9}+\frac{84\!\cdots\!11}{11\!\cdots\!98}a^{8}-\frac{23\!\cdots\!43}{57\!\cdots\!99}a^{7}-\frac{18\!\cdots\!48}{19\!\cdots\!33}a^{6}+\frac{38\!\cdots\!93}{11\!\cdots\!98}a^{5}-\frac{62\!\cdots\!01}{57\!\cdots\!99}a^{4}-\frac{27\!\cdots\!31}{25\!\cdots\!44}a^{3}-\frac{81\!\cdots\!37}{42\!\cdots\!74}a^{2}-\frac{39\!\cdots\!81}{38\!\cdots\!66}a-\frac{75\!\cdots\!96}{63\!\cdots\!11}$, $\frac{15\!\cdots\!65}{38\!\cdots\!66}a^{27}-\frac{19\!\cdots\!11}{76\!\cdots\!32}a^{26}+\frac{10\!\cdots\!59}{57\!\cdots\!99}a^{25}-\frac{23\!\cdots\!71}{38\!\cdots\!66}a^{24}-\frac{25\!\cdots\!17}{57\!\cdots\!99}a^{23}-\frac{18\!\cdots\!94}{57\!\cdots\!99}a^{22}+\frac{20\!\cdots\!43}{11\!\cdots\!98}a^{21}-\frac{22\!\cdots\!05}{11\!\cdots\!98}a^{20}-\frac{47\!\cdots\!79}{57\!\cdots\!99}a^{19}+\frac{97\!\cdots\!63}{22\!\cdots\!96}a^{18}-\frac{16\!\cdots\!01}{19\!\cdots\!33}a^{17}+\frac{78\!\cdots\!57}{11\!\cdots\!98}a^{16}+\frac{25\!\cdots\!88}{19\!\cdots\!33}a^{15}-\frac{31\!\cdots\!51}{57\!\cdots\!99}a^{14}+\frac{86\!\cdots\!70}{82\!\cdots\!57}a^{13}-\frac{68\!\cdots\!49}{57\!\cdots\!99}a^{12}+\frac{38\!\cdots\!77}{16\!\cdots\!14}a^{11}+\frac{40\!\cdots\!43}{22\!\cdots\!96}a^{10}-\frac{32\!\cdots\!88}{82\!\cdots\!57}a^{9}+\frac{19\!\cdots\!49}{38\!\cdots\!66}a^{8}-\frac{32\!\cdots\!86}{57\!\cdots\!99}a^{7}+\frac{74\!\cdots\!68}{19\!\cdots\!33}a^{6}-\frac{19\!\cdots\!33}{11\!\cdots\!98}a^{5}-\frac{17\!\cdots\!05}{11\!\cdots\!98}a^{4}-\frac{54\!\cdots\!25}{57\!\cdots\!99}a^{3}-\frac{49\!\cdots\!81}{22\!\cdots\!96}a^{2}+\frac{86\!\cdots\!97}{57\!\cdots\!99}a+\frac{12\!\cdots\!27}{11\!\cdots\!98}$, $\frac{47\!\cdots\!17}{22\!\cdots\!96}a^{27}-\frac{11\!\cdots\!85}{12\!\cdots\!22}a^{26}+\frac{17\!\cdots\!03}{57\!\cdots\!99}a^{25}-\frac{39\!\cdots\!42}{57\!\cdots\!99}a^{24}+\frac{26\!\cdots\!85}{11\!\cdots\!98}a^{23}-\frac{10\!\cdots\!77}{11\!\cdots\!98}a^{22}+\frac{21\!\cdots\!28}{57\!\cdots\!99}a^{21}+\frac{70\!\cdots\!53}{11\!\cdots\!98}a^{20}-\frac{55\!\cdots\!41}{22\!\cdots\!96}a^{19}+\frac{51\!\cdots\!91}{11\!\cdots\!98}a^{18}-\frac{10\!\cdots\!77}{38\!\cdots\!66}a^{17}-\frac{49\!\cdots\!44}{57\!\cdots\!99}a^{16}+\frac{17\!\cdots\!14}{57\!\cdots\!99}a^{15}-\frac{31\!\cdots\!31}{57\!\cdots\!99}a^{14}+\frac{49\!\cdots\!63}{82\!\cdots\!57}a^{13}-\frac{52\!\cdots\!78}{57\!\cdots\!99}a^{12}-\frac{30\!\cdots\!57}{32\!\cdots\!28}a^{11}+\frac{23\!\cdots\!03}{11\!\cdots\!98}a^{10}-\frac{22\!\cdots\!95}{82\!\cdots\!57}a^{9}+\frac{60\!\cdots\!28}{19\!\cdots\!33}a^{8}-\frac{27\!\cdots\!51}{11\!\cdots\!98}a^{7}+\frac{15\!\cdots\!41}{11\!\cdots\!98}a^{6}+\frac{87\!\cdots\!14}{57\!\cdots\!99}a^{5}+\frac{83\!\cdots\!07}{11\!\cdots\!98}a^{4}+\frac{20\!\cdots\!47}{22\!\cdots\!96}a^{3}-\frac{24\!\cdots\!07}{11\!\cdots\!98}a^{2}-\frac{11\!\cdots\!53}{11\!\cdots\!98}a-\frac{12\!\cdots\!64}{63\!\cdots\!11}$, $\frac{11\!\cdots\!47}{11\!\cdots\!98}a^{27}-\frac{96\!\cdots\!61}{22\!\cdots\!96}a^{26}+\frac{62\!\cdots\!94}{57\!\cdots\!99}a^{25}+\frac{56\!\cdots\!87}{12\!\cdots\!22}a^{24}+\frac{63\!\cdots\!93}{57\!\cdots\!99}a^{23}-\frac{78\!\cdots\!29}{19\!\cdots\!33}a^{22}+\frac{53\!\cdots\!39}{38\!\cdots\!66}a^{21}+\frac{57\!\cdots\!00}{19\!\cdots\!33}a^{20}-\frac{65\!\cdots\!78}{57\!\cdots\!99}a^{19}+\frac{15\!\cdots\!19}{76\!\cdots\!32}a^{18}-\frac{53\!\cdots\!25}{57\!\cdots\!99}a^{17}-\frac{51\!\cdots\!49}{11\!\cdots\!98}a^{16}+\frac{27\!\cdots\!83}{19\!\cdots\!33}a^{15}-\frac{14\!\cdots\!14}{57\!\cdots\!99}a^{14}+\frac{67\!\cdots\!42}{27\!\cdots\!19}a^{13}+\frac{11\!\cdots\!55}{63\!\cdots\!11}a^{12}-\frac{26\!\cdots\!23}{54\!\cdots\!38}a^{11}+\frac{21\!\cdots\!15}{22\!\cdots\!96}a^{10}-\frac{32\!\cdots\!04}{27\!\cdots\!19}a^{9}+\frac{14\!\cdots\!37}{11\!\cdots\!98}a^{8}-\frac{48\!\cdots\!36}{57\!\cdots\!99}a^{7}+\frac{61\!\cdots\!03}{19\!\cdots\!33}a^{6}+\frac{31\!\cdots\!63}{11\!\cdots\!98}a^{5}+\frac{58\!\cdots\!70}{19\!\cdots\!33}a^{4}-\frac{28\!\cdots\!02}{19\!\cdots\!33}a^{3}-\frac{27\!\cdots\!47}{25\!\cdots\!44}a^{2}-\frac{24\!\cdots\!85}{57\!\cdots\!99}a+\frac{26\!\cdots\!61}{11\!\cdots\!98}$, $\frac{18\!\cdots\!92}{19\!\cdots\!33}a^{27}+\frac{92\!\cdots\!49}{22\!\cdots\!96}a^{26}-\frac{30\!\cdots\!20}{57\!\cdots\!99}a^{25}+\frac{52\!\cdots\!04}{57\!\cdots\!99}a^{24}-\frac{12\!\cdots\!73}{11\!\cdots\!98}a^{23}+\frac{44\!\cdots\!63}{11\!\cdots\!98}a^{22}-\frac{99\!\cdots\!45}{11\!\cdots\!98}a^{21}-\frac{62\!\cdots\!74}{21\!\cdots\!37}a^{20}+\frac{20\!\cdots\!06}{19\!\cdots\!33}a^{19}-\frac{42\!\cdots\!53}{22\!\cdots\!96}a^{18}+\frac{44\!\cdots\!54}{57\!\cdots\!99}a^{17}+\frac{50\!\cdots\!03}{11\!\cdots\!98}a^{16}-\frac{78\!\cdots\!07}{57\!\cdots\!99}a^{15}+\frac{13\!\cdots\!65}{57\!\cdots\!99}a^{14}-\frac{18\!\cdots\!22}{82\!\cdots\!57}a^{13}-\frac{15\!\cdots\!13}{57\!\cdots\!99}a^{12}+\frac{12\!\cdots\!88}{27\!\cdots\!19}a^{11}-\frac{68\!\cdots\!41}{76\!\cdots\!32}a^{10}+\frac{92\!\cdots\!00}{82\!\cdots\!57}a^{9}-\frac{67\!\cdots\!60}{57\!\cdots\!99}a^{8}+\frac{84\!\cdots\!01}{11\!\cdots\!98}a^{7}-\frac{27\!\cdots\!15}{11\!\cdots\!98}a^{6}-\frac{41\!\cdots\!81}{11\!\cdots\!98}a^{5}-\frac{13\!\cdots\!36}{57\!\cdots\!99}a^{4}-\frac{10\!\cdots\!15}{57\!\cdots\!99}a^{3}+\frac{36\!\cdots\!09}{76\!\cdots\!32}a^{2}+\frac{18\!\cdots\!17}{19\!\cdots\!33}a+\frac{30\!\cdots\!91}{11\!\cdots\!98}$, $\frac{35\!\cdots\!79}{19\!\cdots\!33}a^{27}-\frac{16\!\cdots\!51}{22\!\cdots\!96}a^{26}-\frac{61\!\cdots\!57}{11\!\cdots\!98}a^{25}+\frac{19\!\cdots\!43}{19\!\cdots\!33}a^{24}+\frac{24\!\cdots\!09}{11\!\cdots\!98}a^{23}-\frac{40\!\cdots\!88}{57\!\cdots\!99}a^{22}+\frac{39\!\cdots\!63}{38\!\cdots\!66}a^{21}+\frac{65\!\cdots\!35}{11\!\cdots\!98}a^{20}-\frac{24\!\cdots\!73}{12\!\cdots\!22}a^{19}+\frac{23\!\cdots\!57}{76\!\cdots\!32}a^{18}-\frac{35\!\cdots\!73}{57\!\cdots\!99}a^{17}-\frac{10\!\cdots\!47}{11\!\cdots\!98}a^{16}+\frac{45\!\cdots\!54}{19\!\cdots\!33}a^{15}-\frac{21\!\cdots\!82}{57\!\cdots\!99}a^{14}+\frac{38\!\cdots\!05}{11\!\cdots\!51}a^{13}+\frac{29\!\cdots\!58}{19\!\cdots\!33}a^{12}-\frac{71\!\cdots\!84}{82\!\cdots\!57}a^{11}+\frac{11\!\cdots\!59}{76\!\cdots\!32}a^{10}-\frac{13\!\cdots\!87}{78\!\cdots\!34}a^{9}+\frac{10\!\cdots\!81}{57\!\cdots\!99}a^{8}-\frac{11\!\cdots\!15}{11\!\cdots\!98}a^{7}+\frac{16\!\cdots\!34}{63\!\cdots\!11}a^{6}+\frac{73\!\cdots\!35}{11\!\cdots\!98}a^{5}+\frac{76\!\cdots\!59}{11\!\cdots\!98}a^{4}+\frac{13\!\cdots\!77}{38\!\cdots\!66}a^{3}-\frac{73\!\cdots\!73}{22\!\cdots\!96}a^{2}-\frac{25\!\cdots\!31}{19\!\cdots\!33}a-\frac{76\!\cdots\!27}{38\!\cdots\!66}$, $\frac{53\!\cdots\!37}{27\!\cdots\!19}a^{27}+\frac{96\!\cdots\!69}{10\!\cdots\!76}a^{26}-\frac{12\!\cdots\!36}{27\!\cdots\!19}a^{25}+\frac{58\!\cdots\!65}{23\!\cdots\!02}a^{24}-\frac{40\!\cdots\!05}{18\!\cdots\!46}a^{23}+\frac{14\!\cdots\!31}{16\!\cdots\!14}a^{22}-\frac{84\!\cdots\!33}{16\!\cdots\!14}a^{21}-\frac{31\!\cdots\!33}{54\!\cdots\!38}a^{20}+\frac{19\!\cdots\!04}{82\!\cdots\!57}a^{19}-\frac{21\!\cdots\!41}{46\!\cdots\!04}a^{18}+\frac{95\!\cdots\!35}{27\!\cdots\!19}a^{17}+\frac{38\!\cdots\!77}{54\!\cdots\!38}a^{16}-\frac{24\!\cdots\!08}{82\!\cdots\!57}a^{15}+\frac{15\!\cdots\!28}{27\!\cdots\!19}a^{14}-\frac{57\!\cdots\!05}{82\!\cdots\!57}a^{13}+\frac{21\!\cdots\!04}{82\!\cdots\!57}a^{12}+\frac{21\!\cdots\!14}{27\!\cdots\!19}a^{11}-\frac{66\!\cdots\!29}{32\!\cdots\!28}a^{10}+\frac{25\!\cdots\!16}{82\!\cdots\!57}a^{9}-\frac{20\!\cdots\!83}{54\!\cdots\!38}a^{8}+\frac{24\!\cdots\!11}{78\!\cdots\!34}a^{7}-\frac{33\!\cdots\!63}{16\!\cdots\!14}a^{6}+\frac{19\!\cdots\!75}{54\!\cdots\!38}a^{5}-\frac{12\!\cdots\!95}{16\!\cdots\!14}a^{4}-\frac{86\!\cdots\!98}{82\!\cdots\!57}a^{3}+\frac{10\!\cdots\!39}{52\!\cdots\!56}a^{2}+\frac{67\!\cdots\!41}{82\!\cdots\!57}a+\frac{57\!\cdots\!71}{23\!\cdots\!02}$, $\frac{16\!\cdots\!51}{25\!\cdots\!44}a^{27}+\frac{71\!\cdots\!13}{57\!\cdots\!99}a^{26}+\frac{36\!\cdots\!01}{57\!\cdots\!99}a^{25}-\frac{50\!\cdots\!65}{11\!\cdots\!98}a^{24}-\frac{82\!\cdots\!35}{11\!\cdots\!98}a^{23}+\frac{10\!\cdots\!91}{11\!\cdots\!98}a^{22}+\frac{34\!\cdots\!72}{57\!\cdots\!99}a^{21}-\frac{15\!\cdots\!11}{63\!\cdots\!11}a^{20}+\frac{23\!\cdots\!33}{76\!\cdots\!32}a^{19}+\frac{33\!\cdots\!53}{57\!\cdots\!99}a^{18}-\frac{36\!\cdots\!53}{11\!\cdots\!98}a^{17}+\frac{33\!\cdots\!30}{57\!\cdots\!99}a^{16}-\frac{22\!\cdots\!29}{57\!\cdots\!99}a^{15}-\frac{42\!\cdots\!35}{57\!\cdots\!99}a^{14}+\frac{25\!\cdots\!63}{82\!\cdots\!57}a^{13}-\frac{33\!\cdots\!64}{57\!\cdots\!99}a^{12}+\frac{85\!\cdots\!63}{15\!\cdots\!68}a^{11}-\frac{10\!\cdots\!15}{19\!\cdots\!33}a^{10}-\frac{70\!\cdots\!17}{82\!\cdots\!57}a^{9}+\frac{19\!\cdots\!81}{11\!\cdots\!98}a^{8}-\frac{27\!\cdots\!73}{11\!\cdots\!98}a^{7}+\frac{27\!\cdots\!29}{11\!\cdots\!98}a^{6}-\frac{10\!\cdots\!66}{57\!\cdots\!99}a^{5}+\frac{11\!\cdots\!65}{57\!\cdots\!99}a^{4}-\frac{15\!\cdots\!25}{22\!\cdots\!96}a^{3}+\frac{36\!\cdots\!22}{19\!\cdots\!33}a^{2}+\frac{67\!\cdots\!61}{38\!\cdots\!66}a+\frac{20\!\cdots\!57}{57\!\cdots\!99}$, $\frac{18\!\cdots\!25}{11\!\cdots\!98}a^{27}+\frac{54\!\cdots\!17}{76\!\cdots\!32}a^{26}-\frac{79\!\cdots\!45}{38\!\cdots\!66}a^{25}+\frac{19\!\cdots\!36}{57\!\cdots\!99}a^{24}-\frac{21\!\cdots\!71}{11\!\cdots\!98}a^{23}+\frac{13\!\cdots\!46}{19\!\cdots\!33}a^{22}-\frac{33\!\cdots\!87}{12\!\cdots\!22}a^{21}-\frac{28\!\cdots\!34}{57\!\cdots\!99}a^{20}+\frac{36\!\cdots\!61}{19\!\cdots\!33}a^{19}-\frac{79\!\cdots\!45}{22\!\cdots\!96}a^{18}+\frac{36\!\cdots\!57}{19\!\cdots\!33}a^{17}+\frac{26\!\cdots\!69}{38\!\cdots\!66}a^{16}-\frac{13\!\cdots\!32}{57\!\cdots\!99}a^{15}+\frac{24\!\cdots\!73}{57\!\cdots\!99}a^{14}-\frac{12\!\cdots\!01}{27\!\cdots\!19}a^{13}+\frac{28\!\cdots\!87}{63\!\cdots\!11}a^{12}+\frac{12\!\cdots\!89}{16\!\cdots\!14}a^{11}-\frac{12\!\cdots\!43}{76\!\cdots\!32}a^{10}+\frac{34\!\cdots\!65}{16\!\cdots\!14}a^{9}-\frac{15\!\cdots\!03}{63\!\cdots\!11}a^{8}+\frac{23\!\cdots\!61}{12\!\cdots\!22}a^{7}-\frac{54\!\cdots\!84}{57\!\cdots\!99}a^{6}-\frac{20\!\cdots\!75}{11\!\cdots\!98}a^{5}-\frac{37\!\cdots\!83}{63\!\cdots\!11}a^{4}-\frac{56\!\cdots\!37}{63\!\cdots\!11}a^{3}+\frac{40\!\cdots\!15}{22\!\cdots\!96}a^{2}+\frac{21\!\cdots\!61}{21\!\cdots\!37}a+\frac{26\!\cdots\!33}{38\!\cdots\!66}$, $\frac{40\!\cdots\!29}{19\!\cdots\!33}a^{27}-\frac{35\!\cdots\!21}{38\!\cdots\!66}a^{26}+\frac{44\!\cdots\!69}{11\!\cdots\!98}a^{25}-\frac{12\!\cdots\!19}{11\!\cdots\!98}a^{24}+\frac{27\!\cdots\!21}{11\!\cdots\!98}a^{23}-\frac{52\!\cdots\!95}{57\!\cdots\!99}a^{22}+\frac{87\!\cdots\!09}{19\!\cdots\!33}a^{21}+\frac{36\!\cdots\!84}{57\!\cdots\!99}a^{20}-\frac{14\!\cdots\!37}{57\!\cdots\!99}a^{19}+\frac{27\!\cdots\!50}{57\!\cdots\!99}a^{18}-\frac{58\!\cdots\!38}{19\!\cdots\!33}a^{17}-\frac{48\!\cdots\!67}{57\!\cdots\!99}a^{16}+\frac{18\!\cdots\!40}{57\!\cdots\!99}a^{15}-\frac{33\!\cdots\!39}{57\!\cdots\!99}a^{14}+\frac{54\!\cdots\!46}{82\!\cdots\!57}a^{13}-\frac{10\!\cdots\!44}{63\!\cdots\!11}a^{12}-\frac{74\!\cdots\!29}{82\!\cdots\!57}a^{11}+\frac{24\!\cdots\!33}{11\!\cdots\!98}a^{10}-\frac{49\!\cdots\!81}{16\!\cdots\!14}a^{9}+\frac{13\!\cdots\!27}{38\!\cdots\!66}a^{8}-\frac{33\!\cdots\!59}{11\!\cdots\!98}a^{7}+\frac{99\!\cdots\!21}{57\!\cdots\!99}a^{6}-\frac{98\!\cdots\!48}{57\!\cdots\!99}a^{5}+\frac{52\!\cdots\!64}{57\!\cdots\!99}a^{4}-\frac{17\!\cdots\!54}{19\!\cdots\!33}a^{3}-\frac{12\!\cdots\!62}{57\!\cdots\!99}a^{2}-\frac{76\!\cdots\!84}{57\!\cdots\!99}a-\frac{50\!\cdots\!77}{57\!\cdots\!99}$, $\frac{77\!\cdots\!95}{36\!\cdots\!92}a^{27}+\frac{71\!\cdots\!87}{82\!\cdots\!57}a^{26}-\frac{22\!\cdots\!59}{27\!\cdots\!19}a^{25}-\frac{13\!\cdots\!83}{60\!\cdots\!82}a^{24}-\frac{19\!\cdots\!22}{82\!\cdots\!57}a^{23}+\frac{98\!\cdots\!77}{11\!\cdots\!51}a^{22}-\frac{14\!\cdots\!34}{91\!\cdots\!73}a^{21}-\frac{35\!\cdots\!75}{54\!\cdots\!38}a^{20}+\frac{76\!\cdots\!53}{32\!\cdots\!28}a^{19}-\frac{10\!\cdots\!52}{27\!\cdots\!19}a^{18}+\frac{24\!\cdots\!53}{16\!\cdots\!14}a^{17}+\frac{12\!\cdots\!40}{13\!\cdots\!39}a^{16}-\frac{79\!\cdots\!03}{27\!\cdots\!19}a^{15}+\frac{57\!\cdots\!33}{11\!\cdots\!51}a^{14}-\frac{38\!\cdots\!52}{82\!\cdots\!57}a^{13}-\frac{20\!\cdots\!15}{30\!\cdots\!91}a^{12}+\frac{10\!\cdots\!23}{10\!\cdots\!76}a^{11}-\frac{14\!\cdots\!06}{82\!\cdots\!57}a^{10}+\frac{63\!\cdots\!03}{27\!\cdots\!19}a^{9}-\frac{40\!\cdots\!17}{16\!\cdots\!14}a^{8}+\frac{45\!\cdots\!77}{27\!\cdots\!19}a^{7}-\frac{19\!\cdots\!03}{27\!\cdots\!19}a^{6}-\frac{40\!\cdots\!36}{82\!\cdots\!57}a^{5}-\frac{13\!\cdots\!11}{16\!\cdots\!14}a^{4}-\frac{13\!\cdots\!01}{52\!\cdots\!56}a^{3}+\frac{19\!\cdots\!89}{91\!\cdots\!73}a^{2}+\frac{29\!\cdots\!17}{16\!\cdots\!14}a+\frac{88\!\cdots\!69}{30\!\cdots\!91}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 18370103601317.53 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{12}\cdot 18370103601317.53 \cdot 1}{2\cdot\sqrt{16703873099612894175413785718089893588328513536}}\cr\approx \mathstrut & 4.30478456534546 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^28 - 4*x^27 + 114*x^24 - 384*x^23 + 36*x^22 + 3048*x^21 - 10707*x^20 + 17652*x^19 - 5556*x^18 - 45144*x^17 + 131832*x^16 - 218112*x^15 + 204000*x^14 + 46224*x^13 - 448863*x^12 + 815100*x^11 - 1018896*x^10 + 1095936*x^9 - 710154*x^8 + 300960*x^7 + 235860*x^6 + 416280*x^5 + 163233*x^4 - 76476*x^3 - 92004*x^2 - 26072*x - 3676)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^28 - 4*x^27 + 114*x^24 - 384*x^23 + 36*x^22 + 3048*x^21 - 10707*x^20 + 17652*x^19 - 5556*x^18 - 45144*x^17 + 131832*x^16 - 218112*x^15 + 204000*x^14 + 46224*x^13 - 448863*x^12 + 815100*x^11 - 1018896*x^10 + 1095936*x^9 - 710154*x^8 + 300960*x^7 + 235860*x^6 + 416280*x^5 + 163233*x^4 - 76476*x^3 - 92004*x^2 - 26072*x - 3676, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^28 - 4*x^27 + 114*x^24 - 384*x^23 + 36*x^22 + 3048*x^21 - 10707*x^20 + 17652*x^19 - 5556*x^18 - 45144*x^17 + 131832*x^16 - 218112*x^15 + 204000*x^14 + 46224*x^13 - 448863*x^12 + 815100*x^11 - 1018896*x^10 + 1095936*x^9 - 710154*x^8 + 300960*x^7 + 235860*x^6 + 416280*x^5 + 163233*x^4 - 76476*x^3 - 92004*x^2 - 26072*x - 3676);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^28 - 4*x^27 + 114*x^24 - 384*x^23 + 36*x^22 + 3048*x^21 - 10707*x^20 + 17652*x^19 - 5556*x^18 - 45144*x^17 + 131832*x^16 - 218112*x^15 + 204000*x^14 + 46224*x^13 - 448863*x^12 + 815100*x^11 - 1018896*x^10 + 1095936*x^9 - 710154*x^8 + 300960*x^7 + 235860*x^6 + 416280*x^5 + 163233*x^4 - 76476*x^3 - 92004*x^2 - 26072*x - 3676);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$G(2,2)$ (as 28T393):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 12096
The 16 conjugacy class representatives for $G(2,2)$
Character table for $G(2,2)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 36 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.7.0.1}{7} }^{4}$ ${\href{/padicField/7.6.0.1}{6} }^{4}{,}\,{\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ ${\href{/padicField/11.6.0.1}{6} }^{4}{,}\,{\href{/padicField/11.3.0.1}{3} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ ${\href{/padicField/13.12.0.1}{12} }^{2}{,}\,{\href{/padicField/13.3.0.1}{3} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ ${\href{/padicField/17.3.0.1}{3} }^{9}{,}\,{\href{/padicField/17.1.0.1}{1} }$ ${\href{/padicField/19.8.0.1}{8} }^{3}{,}\,{\href{/padicField/19.4.0.1}{4} }$ ${\href{/padicField/23.6.0.1}{6} }^{4}{,}\,{\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.3.0.1}{3} }^{9}{,}\,{\href{/padicField/29.1.0.1}{1} }$ ${\href{/padicField/31.8.0.1}{8} }^{3}{,}\,{\href{/padicField/31.4.0.1}{4} }$ ${\href{/padicField/37.6.0.1}{6} }^{4}{,}\,{\href{/padicField/37.3.0.1}{3} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ ${\href{/padicField/41.7.0.1}{7} }^{4}$ ${\href{/padicField/43.12.0.1}{12} }^{2}{,}\,{\href{/padicField/43.3.0.1}{3} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ ${\href{/padicField/47.12.0.1}{12} }^{2}{,}\,{\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ ${\href{/padicField/53.12.0.1}{12} }^{2}{,}\,{\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ ${\href{/padicField/59.12.0.1}{12} }^{2}{,}\,{\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.4.9.2$x^{4} + 2 x^{2} + 2$$4$$1$$9$$D_{4}$$[2, 3, 7/2]$
2.8.31.33$x^{8} + 8 x^{6} + 4 x^{4} + 16 x^{3} + 2$$8$$1$$31$$(C_8:C_2):C_2$$[2, 3, 7/2, 4, 5]$
2.16.66.35$x^{16} + 16 x^{15} + 24 x^{14} + 20 x^{12} + 16 x^{10} + 8 x^{8} + 24 x^{6} + 8 x^{4} + 16 x^{3} + 34$$16$$1$$66$16T41$[2, 3, 7/2, 4, 5]$
\(3\) Copy content Toggle raw display $\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
Deg $27$$27$$1$$30$