Properties

Label 19.8.0.1
Base \(\Q_{19}\)
Degree \(8\)
e \(1\)
f \(8\)
c \(0\)
Galois group $C_8$ (as 8T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{8} + x^{4} + 12 x^{3} + 10 x^{2} + 3 x + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{19}$
Degree $d$: $8$
Ramification exponent $e$: $1$
Residue field degree $f$: $8$
Discriminant exponent $c$: $0$
Discriminant root field: $\Q_{19}(\sqrt{2})$
Root number: $1$
$\card{ \Gal(K/\Q_{ 19 }) }$: $8$
This field is Galois and abelian over $\Q_{19}.$
Visible slopes:None

Intermediate fields

$\Q_{19}(\sqrt{2})$, 19.4.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:19.8.0.1 $\cong \Q_{19}(t)$ where $t$ is a root of \( x^{8} + x^{4} + 12 x^{3} + 10 x^{2} + 3 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x - 19 \) $\ \in\Q_{19}(t)[x]$ Copy content Toggle raw display

Ramification polygon

The ramification polygon is trivial for unramified extensions.

Invariants of the Galois closure

Galois group:$C_8$ (as 8T1)
Inertia group:trivial
Wild inertia group:$C_1$
Unramified degree:$8$
Tame degree:$1$
Wild slopes:None
Galois mean slope:$0$
Galois splitting model:$x^{8} - x^{7} + 3 x^{6} - 11 x^{5} + 44 x^{4} + 53 x^{3} + 153 x^{2} + 160 x + 59$