sage: H = DirichletGroup(1014)
pari: g = idealstar(,1014,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 312 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{156}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{1014}(677,\cdot)$, $\chi_{1014}(847,\cdot)$ |
First 32 of 312 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{1014}(1,\cdot)\) | 1014.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{1014}(5,\cdot)\) | 1014.r | 52 | no | \(1\) | \(1\) | \(e\left(\frac{1}{52}\right)\) | \(e\left(\frac{9}{52}\right)\) | \(e\left(\frac{23}{52}\right)\) | \(e\left(\frac{12}{13}\right)\) | \(-i\) | \(1\) | \(e\left(\frac{1}{26}\right)\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{11}{52}\right)\) | \(e\left(\frac{5}{26}\right)\) |
\(\chi_{1014}(7,\cdot)\) | 1014.w | 156 | no | \(-1\) | \(1\) | \(e\left(\frac{9}{52}\right)\) | \(e\left(\frac{61}{156}\right)\) | \(e\left(\frac{101}{156}\right)\) | \(e\left(\frac{11}{78}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{9}{26}\right)\) | \(e\left(\frac{17}{39}\right)\) | \(e\left(\frac{21}{52}\right)\) | \(e\left(\frac{22}{39}\right)\) |
\(\chi_{1014}(11,\cdot)\) | 1014.x | 156 | no | \(1\) | \(1\) | \(e\left(\frac{23}{52}\right)\) | \(e\left(\frac{101}{156}\right)\) | \(e\left(\frac{79}{156}\right)\) | \(e\left(\frac{35}{39}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{23}{26}\right)\) | \(e\left(\frac{71}{78}\right)\) | \(e\left(\frac{45}{52}\right)\) | \(e\left(\frac{7}{78}\right)\) |
\(\chi_{1014}(17,\cdot)\) | 1014.t | 78 | no | \(-1\) | \(1\) | \(e\left(\frac{12}{13}\right)\) | \(e\left(\frac{11}{78}\right)\) | \(e\left(\frac{35}{39}\right)\) | \(e\left(\frac{11}{78}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{73}{78}\right)\) | \(e\left(\frac{17}{26}\right)\) | \(e\left(\frac{5}{78}\right)\) |
\(\chi_{1014}(19,\cdot)\) | 1014.l | 12 | no | \(-1\) | \(1\) | \(-i\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(-i\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{1014}(23,\cdot)\) | 1014.j | 6 | no | \(-1\) | \(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{1014}(25,\cdot)\) | 1014.p | 26 | no | \(1\) | \(1\) | \(e\left(\frac{1}{26}\right)\) | \(e\left(\frac{9}{26}\right)\) | \(e\left(\frac{23}{26}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(-1\) | \(1\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{11}{26}\right)\) | \(e\left(\frac{5}{13}\right)\) |
\(\chi_{1014}(29,\cdot)\) | 1014.v | 78 | no | \(-1\) | \(1\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{17}{39}\right)\) | \(e\left(\frac{71}{78}\right)\) | \(e\left(\frac{73}{78}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{59}{78}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{19}{78}\right)\) |
\(\chi_{1014}(31,\cdot)\) | 1014.s | 52 | no | \(-1\) | \(1\) | \(e\left(\frac{11}{52}\right)\) | \(e\left(\frac{21}{52}\right)\) | \(e\left(\frac{45}{52}\right)\) | \(e\left(\frac{17}{26}\right)\) | \(-i\) | \(-1\) | \(e\left(\frac{11}{26}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{43}{52}\right)\) | \(e\left(\frac{8}{13}\right)\) |
\(\chi_{1014}(35,\cdot)\) | 1014.v | 78 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{26}\right)\) | \(e\left(\frac{22}{39}\right)\) | \(e\left(\frac{7}{78}\right)\) | \(e\left(\frac{5}{78}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{19}{78}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{59}{78}\right)\) |
\(\chi_{1014}(37,\cdot)\) | 1014.w | 156 | no | \(-1\) | \(1\) | \(e\left(\frac{37}{52}\right)\) | \(e\left(\frac{89}{156}\right)\) | \(e\left(\frac{109}{156}\right)\) | \(e\left(\frac{25}{78}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{26}\right)\) | \(e\left(\frac{28}{39}\right)\) | \(e\left(\frac{17}{52}\right)\) | \(e\left(\frac{11}{39}\right)\) |
\(\chi_{1014}(41,\cdot)\) | 1014.x | 156 | no | \(1\) | \(1\) | \(e\left(\frac{21}{52}\right)\) | \(e\left(\frac{47}{156}\right)\) | \(e\left(\frac{97}{156}\right)\) | \(e\left(\frac{2}{39}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{23}{78}\right)\) | \(e\left(\frac{23}{52}\right)\) | \(e\left(\frac{55}{78}\right)\) |
\(\chi_{1014}(43,\cdot)\) | 1014.u | 78 | no | \(1\) | \(1\) | \(e\left(\frac{1}{26}\right)\) | \(e\left(\frac{53}{78}\right)\) | \(e\left(\frac{43}{78}\right)\) | \(e\left(\frac{7}{39}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{11}{39}\right)\) | \(e\left(\frac{11}{26}\right)\) | \(e\left(\frac{28}{39}\right)\) |
\(\chi_{1014}(47,\cdot)\) | 1014.r | 52 | no | \(1\) | \(1\) | \(e\left(\frac{7}{52}\right)\) | \(e\left(\frac{11}{52}\right)\) | \(e\left(\frac{5}{52}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(i\) | \(1\) | \(e\left(\frac{7}{26}\right)\) | \(e\left(\frac{17}{26}\right)\) | \(e\left(\frac{25}{52}\right)\) | \(e\left(\frac{9}{26}\right)\) |
\(\chi_{1014}(49,\cdot)\) | 1014.u | 78 | no | \(1\) | \(1\) | \(e\left(\frac{9}{26}\right)\) | \(e\left(\frac{61}{78}\right)\) | \(e\left(\frac{23}{78}\right)\) | \(e\left(\frac{11}{39}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{34}{39}\right)\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{5}{39}\right)\) |
\(\chi_{1014}(53,\cdot)\) | 1014.o | 26 | no | \(-1\) | \(1\) | \(e\left(\frac{11}{26}\right)\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{19}{26}\right)\) | \(e\left(\frac{21}{26}\right)\) | \(1\) | \(-1\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{7}{26}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{19}{26}\right)\) |
\(\chi_{1014}(55,\cdot)\) | 1014.q | 39 | no | \(1\) | \(1\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{32}{39}\right)\) | \(e\left(\frac{37}{39}\right)\) | \(e\left(\frac{32}{39}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{12}{13}\right)\) | \(e\left(\frac{28}{39}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{11}{39}\right)\) |
\(\chi_{1014}(59,\cdot)\) | 1014.x | 156 | no | \(1\) | \(1\) | \(e\left(\frac{27}{52}\right)\) | \(e\left(\frac{1}{156}\right)\) | \(e\left(\frac{95}{156}\right)\) | \(e\left(\frac{10}{39}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{26}\right)\) | \(e\left(\frac{37}{78}\right)\) | \(e\left(\frac{37}{52}\right)\) | \(e\left(\frac{41}{78}\right)\) |
\(\chi_{1014}(61,\cdot)\) | 1014.q | 39 | no | \(1\) | \(1\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{1}{39}\right)\) | \(e\left(\frac{17}{39}\right)\) | \(e\left(\frac{1}{39}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{35}{39}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{4}{39}\right)\) |
\(\chi_{1014}(67,\cdot)\) | 1014.w | 156 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{52}\right)\) | \(e\left(\frac{59}{156}\right)\) | \(e\left(\frac{67}{156}\right)\) | \(e\left(\frac{49}{78}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{26}\right)\) | \(e\left(\frac{19}{39}\right)\) | \(e\left(\frac{51}{52}\right)\) | \(e\left(\frac{20}{39}\right)\) |
\(\chi_{1014}(71,\cdot)\) | 1014.x | 156 | no | \(1\) | \(1\) | \(e\left(\frac{21}{52}\right)\) | \(e\left(\frac{151}{156}\right)\) | \(e\left(\frac{149}{156}\right)\) | \(e\left(\frac{28}{39}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{49}{78}\right)\) | \(e\left(\frac{23}{52}\right)\) | \(e\left(\frac{29}{78}\right)\) |
\(\chi_{1014}(73,\cdot)\) | 1014.s | 52 | no | \(-1\) | \(1\) | \(e\left(\frac{49}{52}\right)\) | \(e\left(\frac{51}{52}\right)\) | \(e\left(\frac{35}{52}\right)\) | \(e\left(\frac{19}{26}\right)\) | \(i\) | \(-1\) | \(e\left(\frac{23}{26}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{45}{52}\right)\) | \(e\left(\frac{12}{13}\right)\) |
\(\chi_{1014}(77,\cdot)\) | 1014.n | 26 | no | \(-1\) | \(1\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{1}{26}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{1}{26}\right)\) | \(-1\) | \(-1\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{9}{26}\right)\) | \(e\left(\frac{7}{26}\right)\) | \(e\left(\frac{17}{26}\right)\) |
\(\chi_{1014}(79,\cdot)\) | 1014.m | 13 | no | \(1\) | \(1\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(1\) | \(1\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{11}{13}\right)\) |
\(\chi_{1014}(83,\cdot)\) | 1014.r | 52 | no | \(1\) | \(1\) | \(e\left(\frac{5}{52}\right)\) | \(e\left(\frac{45}{52}\right)\) | \(e\left(\frac{11}{52}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(-i\) | \(1\) | \(e\left(\frac{5}{26}\right)\) | \(e\left(\frac{1}{26}\right)\) | \(e\left(\frac{3}{52}\right)\) | \(e\left(\frac{25}{26}\right)\) |
\(\chi_{1014}(85,\cdot)\) | 1014.w | 156 | no | \(-1\) | \(1\) | \(e\left(\frac{49}{52}\right)\) | \(e\left(\frac{49}{156}\right)\) | \(e\left(\frac{53}{156}\right)\) | \(e\left(\frac{5}{78}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{23}{26}\right)\) | \(e\left(\frac{29}{39}\right)\) | \(e\left(\frac{45}{52}\right)\) | \(e\left(\frac{10}{39}\right)\) |
\(\chi_{1014}(89,\cdot)\) | 1014.k | 12 | no | \(1\) | \(1\) | \(-i\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(i\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{1014}(95,\cdot)\) | 1014.t | 78 | no | \(-1\) | \(1\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{59}{78}\right)\) | \(e\left(\frac{14}{39}\right)\) | \(e\left(\frac{59}{78}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{37}{78}\right)\) | \(e\left(\frac{25}{26}\right)\) | \(e\left(\frac{41}{78}\right)\) |
\(\chi_{1014}(97,\cdot)\) | 1014.w | 156 | no | \(-1\) | \(1\) | \(e\left(\frac{51}{52}\right)\) | \(e\left(\frac{103}{156}\right)\) | \(e\left(\frac{35}{156}\right)\) | \(e\left(\frac{71}{78}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{25}{26}\right)\) | \(e\left(\frac{14}{39}\right)\) | \(e\left(\frac{15}{52}\right)\) | \(e\left(\frac{25}{39}\right)\) |
\(\chi_{1014}(101,\cdot)\) | 1014.t | 78 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{1}{78}\right)\) | \(e\left(\frac{28}{39}\right)\) | \(e\left(\frac{1}{78}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{35}{78}\right)\) | \(e\left(\frac{11}{26}\right)\) | \(e\left(\frac{43}{78}\right)\) |
\(\chi_{1014}(103,\cdot)\) | 1014.p | 26 | no | \(1\) | \(1\) | \(e\left(\frac{17}{26}\right)\) | \(e\left(\frac{23}{26}\right)\) | \(e\left(\frac{1}{26}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(-1\) | \(1\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{5}{26}\right)\) | \(e\left(\frac{7}{13}\right)\) |