Properties

Label 2-787-787.262-c1-0-7
Degree $2$
Conductor $787$
Sign $-0.979 + 0.203i$
Analytic cond. $6.28422$
Root an. cond. $2.50683$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.233 + 0.645i)2-s + (−0.604 + 0.261i)3-s + (1.17 + 0.979i)4-s + (−1.02 − 0.0738i)5-s + (−0.0271 − 0.451i)6-s + (0.845 + 0.671i)7-s + (−2.09 + 1.21i)8-s + (−1.75 + 1.86i)9-s + (0.287 − 0.644i)10-s + (0.121 + 0.775i)11-s + (−0.966 − 0.285i)12-s + (−2.57 − 0.829i)13-s + (−0.631 + 0.388i)14-s + (0.639 − 0.223i)15-s + (0.249 + 1.37i)16-s + (−0.00127 − 0.00173i)17-s + ⋯
L(s)  = 1  + (−0.165 + 0.456i)2-s + (−0.349 + 0.150i)3-s + (0.586 + 0.489i)4-s + (−0.458 − 0.0330i)5-s + (−0.0110 − 0.184i)6-s + (0.319 + 0.253i)7-s + (−0.740 + 0.431i)8-s + (−0.586 + 0.622i)9-s + (0.0909 − 0.203i)10-s + (0.0367 + 0.233i)11-s + (−0.278 − 0.0825i)12-s + (−0.713 − 0.229i)13-s + (−0.168 + 0.103i)14-s + (0.165 − 0.0576i)15-s + (0.0623 + 0.342i)16-s + (−0.000309 − 0.000419i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 787 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.979 + 0.203i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 787 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.979 + 0.203i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(787\)
Sign: $-0.979 + 0.203i$
Analytic conductor: \(6.28422\)
Root analytic conductor: \(2.50683\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{787} (262, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 787,\ (\ :1/2),\ -0.979 + 0.203i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0668945 - 0.650128i\)
\(L(\frac12)\) \(\approx\) \(0.0668945 - 0.650128i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad787 \( 1 + (-21.0 + 18.5i)T \)
good2 \( 1 + (0.233 - 0.645i)T + (-1.53 - 1.28i)T^{2} \)
3 \( 1 + (0.604 - 0.261i)T + (2.05 - 2.18i)T^{2} \)
5 \( 1 + (1.02 + 0.0738i)T + (4.94 + 0.716i)T^{2} \)
7 \( 1 + (-0.845 - 0.671i)T + (1.58 + 6.81i)T^{2} \)
11 \( 1 + (-0.121 - 0.775i)T + (-10.4 + 3.37i)T^{2} \)
13 \( 1 + (2.57 + 0.829i)T + (10.5 + 7.59i)T^{2} \)
17 \( 1 + (0.00127 + 0.00173i)T + (-5.02 + 16.2i)T^{2} \)
19 \( 1 + (-2.23 + 2.15i)T + (0.683 - 18.9i)T^{2} \)
23 \( 1 + (4.00 + 1.50i)T + (17.2 + 15.1i)T^{2} \)
29 \( 1 + (2.49 - 6.86i)T + (-22.2 - 18.5i)T^{2} \)
31 \( 1 + (1.14 + 0.165i)T + (29.7 + 8.79i)T^{2} \)
37 \( 1 + (0.688 - 4.38i)T + (-35.2 - 11.3i)T^{2} \)
41 \( 1 + (-11.3 - 2.77i)T + (36.3 + 18.9i)T^{2} \)
43 \( 1 + (-3.00 + 3.04i)T + (-0.515 - 42.9i)T^{2} \)
47 \( 1 + (5.67 - 4.29i)T + (12.7 - 45.2i)T^{2} \)
53 \( 1 + (13.7 - 2.67i)T + (49.1 - 19.8i)T^{2} \)
59 \( 1 + (4.00 + 1.96i)T + (36.1 + 46.6i)T^{2} \)
61 \( 1 + (2.19 + 5.63i)T + (-44.9 + 41.2i)T^{2} \)
67 \( 1 + (-11.5 - 8.71i)T + (18.2 + 64.4i)T^{2} \)
71 \( 1 + (11.3 + 1.09i)T + (69.6 + 13.5i)T^{2} \)
73 \( 1 + (-2.47 + 0.0594i)T + (72.9 - 3.49i)T^{2} \)
79 \( 1 + (-4.33 - 3.98i)T + (6.62 + 78.7i)T^{2} \)
83 \( 1 + (9.43 + 3.55i)T + (62.4 + 54.6i)T^{2} \)
89 \( 1 + (1.56 + 0.421i)T + (76.8 + 44.8i)T^{2} \)
97 \( 1 + (1.00 - 2.56i)T + (-71.4 - 65.6i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.01442117037879574458741266775, −9.871213614272521232273478345488, −8.840815082417014641418294368802, −7.921599633543360383741028179394, −7.53552020712075936990126394528, −6.41910020659837476122073513824, −5.51354718548958901653408426329, −4.60673057981498447480943502721, −3.22105328076360722159156927148, −2.16302424194317110809502325027, 0.33215004846391872883355688525, 1.82252569890957382319644930408, 3.10816257836087515120310683387, 4.20134789066464076718147760038, 5.63866617251738863022909286387, 6.16022831550494799097282513543, 7.30637901707446186316366031207, 7.974966984030520543741695151964, 9.332431770914614694397802353293, 9.805139784803452506206968084809

Graph of the $Z$-function along the critical line