Properties

Label 1037.1027
Modulus $1037$
Conductor $1037$
Order $240$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1037, base_ring=CyclotomicField(240))
 
M = H._module
 
chi = DirichletCharacter(H, M([165,212]))
 
pari: [g,chi] = znchar(Mod(1027,1037))
 

Basic properties

Modulus: \(1037\)
Conductor: \(1037\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(240\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1037.cs

\(\chi_{1037}(7,\cdot)\) \(\chi_{1037}(31,\cdot)\) \(\chi_{1037}(44,\cdot)\) \(\chi_{1037}(54,\cdot)\) \(\chi_{1037}(71,\cdot)\) \(\chi_{1037}(79,\cdot)\) \(\chi_{1037}(91,\cdot)\) \(\chi_{1037}(112,\cdot)\) \(\chi_{1037}(129,\cdot)\) \(\chi_{1037}(139,\cdot)\) \(\chi_{1037}(165,\cdot)\) \(\chi_{1037}(177,\cdot)\) \(\chi_{1037}(218,\cdot)\) \(\chi_{1037}(226,\cdot)\) \(\chi_{1037}(227,\cdot)\) \(\chi_{1037}(250,\cdot)\) \(\chi_{1037}(262,\cdot)\) \(\chi_{1037}(275,\cdot)\) \(\chi_{1037}(295,\cdot)\) \(\chi_{1037}(299,\cdot)\) \(\chi_{1037}(303,\cdot)\) \(\chi_{1037}(311,\cdot)\) \(\chi_{1037}(312,\cdot)\) \(\chi_{1037}(368,\cdot)\) \(\chi_{1037}(384,\cdot)\) \(\chi_{1037}(420,\cdot)\) \(\chi_{1037}(437,\cdot)\) \(\chi_{1037}(453,\cdot)\) \(\chi_{1037}(462,\cdot)\) \(\chi_{1037}(481,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{240})$
Fixed field: Number field defined by a degree 240 polynomial (not computed)

Values on generators

\((428,307)\) → \((e\left(\frac{11}{16}\right),e\left(\frac{53}{60}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 1037 }(1027, a) \) \(1\)\(1\)\(e\left(\frac{61}{120}\right)\)\(e\left(\frac{79}{80}\right)\)\(e\left(\frac{1}{60}\right)\)\(e\left(\frac{209}{240}\right)\)\(e\left(\frac{119}{240}\right)\)\(e\left(\frac{203}{240}\right)\)\(e\left(\frac{21}{40}\right)\)\(e\left(\frac{39}{40}\right)\)\(e\left(\frac{91}{240}\right)\)\(e\left(\frac{1}{16}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1037 }(1027,a) \;\) at \(\;a = \) e.g. 2