from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1037, base_ring=CyclotomicField(48))
M = H._module
chi = DirichletCharacter(H, M([33,44]))
pari: [g,chi] = znchar(Mod(143,1037))
Basic properties
Modulus: | \(1037\) | |
Conductor: | \(1037\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(48\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 1037.bz
\(\chi_{1037}(143,\cdot)\) \(\chi_{1037}(265,\cdot)\) \(\chi_{1037}(284,\cdot)\) \(\chi_{1037}(334,\cdot)\) \(\chi_{1037}(337,\cdot)\) \(\chi_{1037}(345,\cdot)\) \(\chi_{1037}(448,\cdot)\) \(\chi_{1037}(517,\cdot)\) \(\chi_{1037}(581,\cdot)\) \(\chi_{1037}(639,\cdot)\) \(\chi_{1037}(711,\cdot)\) \(\chi_{1037}(822,\cdot)\) \(\chi_{1037}(947,\cdot)\) \(\chi_{1037}(955,\cdot)\) \(\chi_{1037}(997,\cdot)\) \(\chi_{1037}(1008,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{48})\) |
Fixed field: | Number field defined by a degree 48 polynomial |
Values on generators
\((428,307)\) → \((e\left(\frac{11}{16}\right),e\left(\frac{11}{12}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
\( \chi_{ 1037 }(143, a) \) | \(1\) | \(1\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{29}{48}\right)\) | \(e\left(\frac{35}{48}\right)\) | \(e\left(\frac{23}{48}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{9}{16}\right)\) |
sage: chi.jacobi_sum(n)