Properties

Label 1037.143
Modulus $1037$
Conductor $1037$
Order $48$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1037, base_ring=CyclotomicField(48))
 
M = H._module
 
chi = DirichletCharacter(H, M([33,44]))
 
pari: [g,chi] = znchar(Mod(143,1037))
 

Basic properties

Modulus: \(1037\)
Conductor: \(1037\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(48\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1037.bz

\(\chi_{1037}(143,\cdot)\) \(\chi_{1037}(265,\cdot)\) \(\chi_{1037}(284,\cdot)\) \(\chi_{1037}(334,\cdot)\) \(\chi_{1037}(337,\cdot)\) \(\chi_{1037}(345,\cdot)\) \(\chi_{1037}(448,\cdot)\) \(\chi_{1037}(517,\cdot)\) \(\chi_{1037}(581,\cdot)\) \(\chi_{1037}(639,\cdot)\) \(\chi_{1037}(711,\cdot)\) \(\chi_{1037}(822,\cdot)\) \(\chi_{1037}(947,\cdot)\) \(\chi_{1037}(955,\cdot)\) \(\chi_{1037}(997,\cdot)\) \(\chi_{1037}(1008,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{48})\)
Fixed field: Number field defined by a degree 48 polynomial

Values on generators

\((428,307)\) → \((e\left(\frac{11}{16}\right),e\left(\frac{11}{12}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 1037 }(143, a) \) \(1\)\(1\)\(e\left(\frac{13}{24}\right)\)\(e\left(\frac{3}{16}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{29}{48}\right)\)\(e\left(\frac{35}{48}\right)\)\(e\left(\frac{23}{48}\right)\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{3}{8}\right)\)\(e\left(\frac{7}{48}\right)\)\(e\left(\frac{9}{16}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1037 }(143,a) \;\) at \(\;a = \) e.g. 2