Properties

Label 1064.181
Modulus 10641064
Conductor 10641064
Order 1818
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1064, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,9,9,17]))
 
pari: [g,chi] = znchar(Mod(181,1064))
 

Basic properties

Modulus: 10641064
Conductor: 10641064
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1818
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1064.em

χ1064(13,)\chi_{1064}(13,\cdot) χ1064(181,)\chi_{1064}(181,\cdot) χ1064(573,)\chi_{1064}(573,\cdot) χ1064(629,)\chi_{1064}(629,\cdot) χ1064(965,)\chi_{1064}(965,\cdot) χ1064(1021,)\chi_{1064}(1021,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ9)\Q(\zeta_{9})
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

(799,533,913,1009)(799,533,913,1009)(1,1,1,e(1718))(1,-1,-1,e\left(\frac{17}{18}\right))

First values

aa 1-1113355991111131315151717232325252727
χ1064(181,a) \chi_{ 1064 }(181, a) 1111e(518)e\left(\frac{5}{18}\right)e(19)e\left(\frac{1}{9}\right)e(59)e\left(\frac{5}{9}\right)e(56)e\left(\frac{5}{6}\right)e(1318)e\left(\frac{13}{18}\right)e(718)e\left(\frac{7}{18}\right)e(1718)e\left(\frac{17}{18}\right)e(89)e\left(\frac{8}{9}\right)e(29)e\left(\frac{2}{9}\right)e(56)e\left(\frac{5}{6}\right)
sage: chi.jacobi_sum(n)
 
χ1064(181,a)   \chi_{ 1064 }(181,a) \; at   a=\;a = e.g. 2