Properties

Label 1080.1069
Modulus $1080$
Conductor $1080$
Order $18$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1080, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,9,4,9]))
 
pari: [g,chi] = znchar(Mod(1069,1080))
 

Basic properties

Modulus: \(1080\)
Conductor: \(1080\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(18\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1080.cj

\(\chi_{1080}(229,\cdot)\) \(\chi_{1080}(349,\cdot)\) \(\chi_{1080}(589,\cdot)\) \(\chi_{1080}(709,\cdot)\) \(\chi_{1080}(949,\cdot)\) \(\chi_{1080}(1069,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

\((271,541,1001,217)\) → \((1,-1,e\left(\frac{2}{9}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 1080 }(1069, a) \) \(1\)\(1\)\(e\left(\frac{1}{18}\right)\)\(e\left(\frac{7}{18}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{17}{18}\right)\)\(e\left(\frac{13}{18}\right)\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{7}{9}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1080 }(1069,a) \;\) at \(\;a = \) e.g. 2