Properties

Modulus $1125$
Structure \(C_{2}\times C_{300}\)
Order $600$

Learn more

Show commands: PariGP / SageMath

sage: H = DirichletGroup(1125)
 
pari: g = idealstar(,1125,2)
 

Character group

sage: G.order()
 
pari: g.no
 
Order = 600
sage: H.invariants()
 
pari: g.cyc
 
Structure = \(C_{2}\times C_{300}\)
sage: H.gens()
 
pari: g.gen
 
Generators = $\chi_{1125}(1001,\cdot)$, $\chi_{1125}(127,\cdot)$

First 32 of 600 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(2\) \(4\) \(7\) \(8\) \(11\) \(13\) \(14\) \(16\) \(17\) \(19\)
\(\chi_{1125}(1,\cdot)\) 1125.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{1125}(2,\cdot)\) 1125.bj 300 yes \(1\) \(1\) \(e\left(\frac{53}{300}\right)\) \(e\left(\frac{53}{150}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{53}{100}\right)\) \(e\left(\frac{139}{150}\right)\) \(e\left(\frac{217}{300}\right)\) \(e\left(\frac{52}{75}\right)\) \(e\left(\frac{53}{75}\right)\) \(e\left(\frac{23}{100}\right)\) \(e\left(\frac{9}{50}\right)\)
\(\chi_{1125}(4,\cdot)\) 1125.bf 150 yes \(1\) \(1\) \(e\left(\frac{53}{150}\right)\) \(e\left(\frac{53}{75}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{3}{50}\right)\) \(e\left(\frac{64}{75}\right)\) \(e\left(\frac{67}{150}\right)\) \(e\left(\frac{29}{75}\right)\) \(e\left(\frac{31}{75}\right)\) \(e\left(\frac{23}{50}\right)\) \(e\left(\frac{9}{25}\right)\)
\(\chi_{1125}(7,\cdot)\) 1125.bb 60 no \(-1\) \(1\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{3}{10}\right)\)
\(\chi_{1125}(8,\cdot)\) 1125.be 100 no \(1\) \(1\) \(e\left(\frac{53}{100}\right)\) \(e\left(\frac{3}{50}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{59}{100}\right)\) \(e\left(\frac{39}{50}\right)\) \(e\left(\frac{17}{100}\right)\) \(e\left(\frac{2}{25}\right)\) \(e\left(\frac{3}{25}\right)\) \(e\left(\frac{69}{100}\right)\) \(e\left(\frac{27}{50}\right)\)
\(\chi_{1125}(11,\cdot)\) 1125.bh 150 yes \(-1\) \(1\) \(e\left(\frac{139}{150}\right)\) \(e\left(\frac{64}{75}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{39}{50}\right)\) \(e\left(\frac{139}{150}\right)\) \(e\left(\frac{73}{75}\right)\) \(e\left(\frac{29}{150}\right)\) \(e\left(\frac{53}{75}\right)\) \(e\left(\frac{49}{50}\right)\) \(e\left(\frac{17}{25}\right)\)
\(\chi_{1125}(13,\cdot)\) 1125.bi 300 yes \(-1\) \(1\) \(e\left(\frac{217}{300}\right)\) \(e\left(\frac{67}{150}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{17}{100}\right)\) \(e\left(\frac{73}{75}\right)\) \(e\left(\frac{263}{300}\right)\) \(e\left(\frac{31}{150}\right)\) \(e\left(\frac{67}{75}\right)\) \(e\left(\frac{47}{100}\right)\) \(e\left(\frac{1}{50}\right)\)
\(\chi_{1125}(14,\cdot)\) 1125.bg 150 yes \(-1\) \(1\) \(e\left(\frac{52}{75}\right)\) \(e\left(\frac{29}{75}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{2}{25}\right)\) \(e\left(\frac{29}{150}\right)\) \(e\left(\frac{31}{150}\right)\) \(e\left(\frac{19}{150}\right)\) \(e\left(\frac{58}{75}\right)\) \(e\left(\frac{7}{25}\right)\) \(e\left(\frac{12}{25}\right)\)
\(\chi_{1125}(16,\cdot)\) 1125.bc 75 yes \(1\) \(1\) \(e\left(\frac{53}{75}\right)\) \(e\left(\frac{31}{75}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{3}{25}\right)\) \(e\left(\frac{53}{75}\right)\) \(e\left(\frac{67}{75}\right)\) \(e\left(\frac{58}{75}\right)\) \(e\left(\frac{62}{75}\right)\) \(e\left(\frac{23}{25}\right)\) \(e\left(\frac{18}{25}\right)\)
\(\chi_{1125}(17,\cdot)\) 1125.be 100 no \(1\) \(1\) \(e\left(\frac{23}{100}\right)\) \(e\left(\frac{23}{50}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{69}{100}\right)\) \(e\left(\frac{49}{50}\right)\) \(e\left(\frac{47}{100}\right)\) \(e\left(\frac{7}{25}\right)\) \(e\left(\frac{23}{25}\right)\) \(e\left(\frac{79}{100}\right)\) \(e\left(\frac{7}{50}\right)\)
\(\chi_{1125}(19,\cdot)\) 1125.y 50 no \(1\) \(1\) \(e\left(\frac{9}{50}\right)\) \(e\left(\frac{9}{25}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{27}{50}\right)\) \(e\left(\frac{17}{25}\right)\) \(e\left(\frac{1}{50}\right)\) \(e\left(\frac{12}{25}\right)\) \(e\left(\frac{18}{25}\right)\) \(e\left(\frac{7}{50}\right)\) \(e\left(\frac{6}{25}\right)\)
\(\chi_{1125}(22,\cdot)\) 1125.bi 300 yes \(-1\) \(1\) \(e\left(\frac{31}{300}\right)\) \(e\left(\frac{31}{150}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{31}{100}\right)\) \(e\left(\frac{64}{75}\right)\) \(e\left(\frac{209}{300}\right)\) \(e\left(\frac{133}{150}\right)\) \(e\left(\frac{31}{75}\right)\) \(e\left(\frac{21}{100}\right)\) \(e\left(\frac{43}{50}\right)\)
\(\chi_{1125}(23,\cdot)\) 1125.bj 300 yes \(1\) \(1\) \(e\left(\frac{43}{300}\right)\) \(e\left(\frac{43}{150}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{43}{100}\right)\) \(e\left(\frac{59}{150}\right)\) \(e\left(\frac{227}{300}\right)\) \(e\left(\frac{62}{75}\right)\) \(e\left(\frac{43}{75}\right)\) \(e\left(\frac{13}{100}\right)\) \(e\left(\frac{29}{50}\right)\)
\(\chi_{1125}(26,\cdot)\) 1125.n 10 no \(-1\) \(1\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{4}{5}\right)\) \(1\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{1}{5}\right)\)
\(\chi_{1125}(28,\cdot)\) 1125.bd 100 no \(-1\) \(1\) \(e\left(\frac{87}{100}\right)\) \(e\left(\frac{37}{50}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{61}{100}\right)\) \(e\left(\frac{3}{25}\right)\) \(e\left(\frac{93}{100}\right)\) \(e\left(\frac{41}{50}\right)\) \(e\left(\frac{12}{25}\right)\) \(e\left(\frac{51}{100}\right)\) \(e\left(\frac{33}{50}\right)\)
\(\chi_{1125}(29,\cdot)\) 1125.bg 150 yes \(-1\) \(1\) \(e\left(\frac{59}{75}\right)\) \(e\left(\frac{43}{75}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{9}{25}\right)\) \(e\left(\frac{43}{150}\right)\) \(e\left(\frac{77}{150}\right)\) \(e\left(\frac{23}{150}\right)\) \(e\left(\frac{11}{75}\right)\) \(e\left(\frac{19}{25}\right)\) \(e\left(\frac{4}{25}\right)\)
\(\chi_{1125}(31,\cdot)\) 1125.bc 75 yes \(1\) \(1\) \(e\left(\frac{61}{75}\right)\) \(e\left(\frac{47}{75}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{11}{25}\right)\) \(e\left(\frac{61}{75}\right)\) \(e\left(\frac{29}{75}\right)\) \(e\left(\frac{71}{75}\right)\) \(e\left(\frac{19}{75}\right)\) \(e\left(\frac{1}{25}\right)\) \(e\left(\frac{16}{25}\right)\)
\(\chi_{1125}(32,\cdot)\) 1125.ba 60 no \(1\) \(1\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{9}{10}\right)\)
\(\chi_{1125}(34,\cdot)\) 1125.bf 150 yes \(1\) \(1\) \(e\left(\frac{61}{150}\right)\) \(e\left(\frac{61}{75}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{11}{50}\right)\) \(e\left(\frac{68}{75}\right)\) \(e\left(\frac{29}{150}\right)\) \(e\left(\frac{73}{75}\right)\) \(e\left(\frac{47}{75}\right)\) \(e\left(\frac{1}{50}\right)\) \(e\left(\frac{8}{25}\right)\)
\(\chi_{1125}(37,\cdot)\) 1125.bd 100 no \(-1\) \(1\) \(e\left(\frac{29}{100}\right)\) \(e\left(\frac{29}{50}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{87}{100}\right)\) \(e\left(\frac{1}{25}\right)\) \(e\left(\frac{31}{100}\right)\) \(e\left(\frac{47}{50}\right)\) \(e\left(\frac{4}{25}\right)\) \(e\left(\frac{17}{100}\right)\) \(e\left(\frac{11}{50}\right)\)
\(\chi_{1125}(38,\cdot)\) 1125.bj 300 yes \(1\) \(1\) \(e\left(\frac{107}{300}\right)\) \(e\left(\frac{107}{150}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{7}{100}\right)\) \(e\left(\frac{91}{150}\right)\) \(e\left(\frac{223}{300}\right)\) \(e\left(\frac{13}{75}\right)\) \(e\left(\frac{32}{75}\right)\) \(e\left(\frac{37}{100}\right)\) \(e\left(\frac{21}{50}\right)\)
\(\chi_{1125}(41,\cdot)\) 1125.bh 150 yes \(-1\) \(1\) \(e\left(\frac{41}{150}\right)\) \(e\left(\frac{41}{75}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{41}{50}\right)\) \(e\left(\frac{41}{150}\right)\) \(e\left(\frac{62}{75}\right)\) \(e\left(\frac{1}{150}\right)\) \(e\left(\frac{7}{75}\right)\) \(e\left(\frac{31}{50}\right)\) \(e\left(\frac{23}{25}\right)\)
\(\chi_{1125}(43,\cdot)\) 1125.bb 60 no \(-1\) \(1\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{1}{10}\right)\)
\(\chi_{1125}(44,\cdot)\) 1125.z 50 no \(-1\) \(1\) \(e\left(\frac{7}{25}\right)\) \(e\left(\frac{14}{25}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{21}{25}\right)\) \(e\left(\frac{39}{50}\right)\) \(e\left(\frac{21}{50}\right)\) \(e\left(\frac{29}{50}\right)\) \(e\left(\frac{3}{25}\right)\) \(e\left(\frac{11}{25}\right)\) \(e\left(\frac{1}{25}\right)\)
\(\chi_{1125}(46,\cdot)\) 1125.t 25 no \(1\) \(1\) \(e\left(\frac{8}{25}\right)\) \(e\left(\frac{16}{25}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{24}{25}\right)\) \(e\left(\frac{8}{25}\right)\) \(e\left(\frac{12}{25}\right)\) \(e\left(\frac{13}{25}\right)\) \(e\left(\frac{7}{25}\right)\) \(e\left(\frac{9}{25}\right)\) \(e\left(\frac{19}{25}\right)\)
\(\chi_{1125}(47,\cdot)\) 1125.bj 300 yes \(1\) \(1\) \(e\left(\frac{41}{300}\right)\) \(e\left(\frac{41}{150}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{41}{100}\right)\) \(e\left(\frac{133}{150}\right)\) \(e\left(\frac{49}{300}\right)\) \(e\left(\frac{19}{75}\right)\) \(e\left(\frac{41}{75}\right)\) \(e\left(\frac{31}{100}\right)\) \(e\left(\frac{23}{50}\right)\)
\(\chi_{1125}(49,\cdot)\) 1125.v 30 no \(1\) \(1\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{3}{5}\right)\)
\(\chi_{1125}(52,\cdot)\) 1125.bi 300 yes \(-1\) \(1\) \(e\left(\frac{23}{300}\right)\) \(e\left(\frac{23}{150}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{23}{100}\right)\) \(e\left(\frac{62}{75}\right)\) \(e\left(\frac{97}{300}\right)\) \(e\left(\frac{89}{150}\right)\) \(e\left(\frac{23}{75}\right)\) \(e\left(\frac{93}{100}\right)\) \(e\left(\frac{19}{50}\right)\)
\(\chi_{1125}(53,\cdot)\) 1125.be 100 no \(1\) \(1\) \(e\left(\frac{17}{100}\right)\) \(e\left(\frac{17}{50}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{51}{100}\right)\) \(e\left(\frac{21}{50}\right)\) \(e\left(\frac{13}{100}\right)\) \(e\left(\frac{3}{25}\right)\) \(e\left(\frac{17}{25}\right)\) \(e\left(\frac{41}{100}\right)\) \(e\left(\frac{3}{50}\right)\)
\(\chi_{1125}(56,\cdot)\) 1125.bh 150 yes \(-1\) \(1\) \(e\left(\frac{7}{150}\right)\) \(e\left(\frac{7}{75}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{7}{50}\right)\) \(e\left(\frac{7}{150}\right)\) \(e\left(\frac{49}{75}\right)\) \(e\left(\frac{77}{150}\right)\) \(e\left(\frac{14}{75}\right)\) \(e\left(\frac{37}{50}\right)\) \(e\left(\frac{21}{25}\right)\)
\(\chi_{1125}(58,\cdot)\) 1125.bi 300 yes \(-1\) \(1\) \(e\left(\frac{289}{300}\right)\) \(e\left(\frac{139}{150}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{89}{100}\right)\) \(e\left(\frac{16}{75}\right)\) \(e\left(\frac{71}{300}\right)\) \(e\left(\frac{127}{150}\right)\) \(e\left(\frac{64}{75}\right)\) \(e\left(\frac{99}{100}\right)\) \(e\left(\frac{17}{50}\right)\)
\(\chi_{1125}(59,\cdot)\) 1125.bg 150 yes \(-1\) \(1\) \(e\left(\frac{13}{75}\right)\) \(e\left(\frac{26}{75}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{13}{25}\right)\) \(e\left(\frac{101}{150}\right)\) \(e\left(\frac{139}{150}\right)\) \(e\left(\frac{61}{150}\right)\) \(e\left(\frac{52}{75}\right)\) \(e\left(\frac{8}{25}\right)\) \(e\left(\frac{3}{25}\right)\)
Click here to search among the remaining 568 characters.